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THE great importance of the results obtained by means of the pendulum has induced philosophers to devote so
much attention to the subject, and to perform the experiments with such a scrupulous regard to accuracy in every
particular, that pendulum observations may justly be ranked among those most distinguished by modern exactness.
It is unnecessary here to enumerate the different methods which have been employed, and the severa corrections
which must be made, in order to deduce from the actual observations the result which would correspond to the
ideal case of a simple pendulum performing indefinitely small oscillations in vacuum. There is only one of these
corrections which bears on the subject of the present paper, namely, the correction usually termed the reduction to a
vacuum. On account of the inconvenience and expense attending experiments in a vacuum apparatus, the
observations are usualy made in air, and it then becomes necessary to apply a small correction, in order to reduce
the observed result to what would have been observed had the pendulum been swung in a vacuum. The most
obvious effect of the air consists in a diminution of the moving force, and consequent increase in the time of
vibration, arising from the buoyancy of the fluid. The correction for buoyancy is easily calculated from the first
principles of hydrostatics, and formed for a considerable time the only correction which it was thought necessary to
make for reduction to a vacuum. But in the year 1828 Bessdl, in a very important memoir in which he determined
by a new method the length of the seconds pendulum, pointed out from theoretical considerations the necessity of
taking account of the inertia of the air as well as of its buoyancy. The numerical calculation of the effect of the
inertia forms a problem of hydrodynamics which Bessal did not attack; but he concluded from general principles
that a fluid, or at any rate a fluid of small density, has no other effect on the time of very small vibrations of a
pendulum than that it diminishes its gravity and increases its moment of inertia. In the case of a body of which the
dimensions are small compared with the length of the suspending wire, Bessal represented the increase of inertia
by that of a mass equal to k times the mass of the fluid displaced, which must be supposed to be added to the inertia
of the body itself. This factor k be determined experimentally for a sphere a little more than two inches in diameter,
swung in air and in water. The result for air, obtained in arather indirect way, was k = 0.9459, which value Bessel
in a subsequent paper increased to 0.956. A brass sphere of the above size having been swung in water with two
different lengths of wire in succession gave two values of k, differing a little from each other, and equal to only
about two-thirds of the value obtained for air.

The attention of the scientific world having been called to the subject by the publication of Bessel's memoir,
fresh researches both theoretical and experimental soon appeared. In order to examine the effect of the air by a
more direct method than that employed by Bessel, a large vacuum apparatus was erected at the expense of the
Board of Longitude, and by means of this apparatus Captain (now Colonel) Sabine determined the effect of the air
on the time of vibration of a particular invariable pendulum. The results of the experiments are contained in a
memoir read before the Roya Society in March 1829, and printed in the Philosophical Transactions for that year.
The mean of eight very consistent experiments gave 1.655 as the factor by which for that pendulum the old
correction for buoyancy must be multiplied in order to give the whole correction on account of the air. A very
remarkable fact was discovered in the course of these experiments. While the effects of air at the atmospheric
pressure and under a pressure of about half an atmosphere were found to be as nearly as possible proportional to
the densities, it was found that the effect of hydrogen at the atmospheric pressure was much greater, compared with
the effect of air, than corresponded with its density. In fact, it appeared that the ratio of the effects of hydrogen and
air on the times of vibration was about 1 to 5 1/4, while the ratio of the densitiesis only about 1 to 13. In speaking
of this result Colonel Sabine remarks, "The difference of this ratio from that shewn by experiment is greater than
can well be ascribed to accidental error in the experiment, particularly as repetition produced results almost
identical. May it not indicate an inherent property in the elastic fluids, analogous to that of viscidity in liquids, of
resistance to the motion of bodies passing through them, independently of their density ? a property, in such case,
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possessed by air and hydrogen gas in very different degrees; since it would appear from the experiments that the
ratio of the resistance of hydrogen gas to that of air is more than double the ratio following from their densities.
Should the existence of such adistinct property of resistance, varying in the different elastic fluids, be confirmed by
experiments now in progress with other gases, an apparatus more suitable than the present to investigate the ratio
in which it is possessed by them, could scarcely be devised: and the pendulum, in addition to its many important
and useful purposes in general physics, may find an application for its very delicate, but, with due precaution, not
more delicate than certain, determinations, in the domain of chemistry.” Colonel Sabine has informed me that the
experiments here alluded to were interrupted by a cause which need not now be mentioned, but that as far as they
went they confirmed the result of the experiments with hydrogen, and pointed out the existence of a specific action
in different gases, quite distinct from mere variations of density.

Our knowledge on the subject of the effect of air on the time of vibration of pendulums has received a most
valuable addition from the labours of the late Mr Baily, who erected a vacuum apparatus at his own house, with
which he performed many hundreds of careful experiments on a great variety of pendulums. The experiments are
described in a paper read before the Royal Society on the 31st of May 1832. The result for each pendulum is
expressed by the value of n, the factor by which the old correction for buoyancy must be multiplied in order to give
the whole effect of the air as deduced from observation. Four spheres, not quite 1 1/2 inch in diameter, gave as a
mean n = 1.864, while three spheres, a little more than 2 inches in diameter, gave only 1.748. The latter were
nearly of the same size as those with which Bessel, by a different method, had obtained k = 0.946 or 0.956, which
corresponds to n = 1.946 or 1.956. Among the "Additional Experiments” in the latter part of Baily's paper, is a set
in which the pendulums consisted of plain cylindrical rods. With these pendulums it was found that n regularly
increased, though according to an unknown law, as the diameter of the rod decreased. While a brass tube 1 1/2
inch in diameter gave n equal to about 2.3, a thin rod or thick wire only 0.072 inch in diameter gave for n a value
as great as 7.530.

Mathematicians in the meanwhile were not idle, and several memoirs appeared about this time, of which the
object was to determine from hydrodynamics the effect of a fluid on the motion of a pendulum. The first of these
came from the pen of the celebrated Poisson. It was read before the French Academy on the 22nd of August 1831,
and is printed in the 11th Volume of the Memoirs. In this paper, Poisson considers the case of a sphere suspended
by a fine wire, and oscillating in the air, or in any gas. He employs the ordinary equations of motion of an elastic
fluid, simplified by neglecting the terms which involve the square of the velocity; but in the end, in adapting his
solution to practice, be neglects, as insensible, the terms by which alone the action of an elastic differs from that of
an incompressible fluid, so that the result thus simplified is equally applicable to fluids of both classes. He finds
that when insensible quantities are neglected n = 1.5, so that the mass which we must suppose added to that of the
pendulum is equal to half the mass of the fluid displaced. This result does not greatly differ from the results
obtained experimentally by Bessel in the case of spheres oscillating in water, but differs materially from the result
he bad obtained for air. It agrees pretty closely with some experiments which bad been performed about fifty years
before by Dubuat, who bad in fact anticipated Bessel in shewing that the time of vibration of a pendulum vibrating
in afluid would be affected by the inertia of the fluid as well as by its density. Dubuat's labours on this subject had
been altogether overlooked by those who were engaged in pendulum experiments; probably because such persons
were not likely to seek in a treatise on hydraulics for information connected with the subject of their researches.
Dubuat had, in fact, rather applied the pendulum to hydrodynamics than hydrodynamics to the pendulum.

In the Philosophical Magazine for September 1833, p. 185, is a short paper by Professor Challis, on the subject
of the resistance to a ball pendulum, After referring to a former paper, in which he had shewn that no sensible
error would be committed in a problem of this nature by neglecting the compressibility of the fluid even if it be
elastic, Professor Challis, adopting a particular hypothesis respecting the motion, obtains 2 for the value of the
factor n for such a pendulum. This mode of solution, which is adopted in several subsequent papers, has given rise
to a controversy between Professor Challis and the Astronomer Royal, who maintains the justice of Poisson's result.

In a paper read before the Royal Society of Edinburgh on the 16th of December 1833, and printed in the 13th
Volume of the Society's Transactions, Green has determined from the common equations of fluid motion the
resistance to an ellipsoid performing small oscillations without rotation. The result is expressed by a definite
integral; but when two of the principal axes of the ellipsoid become equal, the integral admits of expression in
finite terms, by means of circular or logarithmic functions. When the ellipsoid becomes a sphere, Green's result
reduces itself to Poisson's.
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In a memoir read before the Royal Academy of Turin on the 18th of January 1835, and printed in the 37th
Volume of the memoirs of the Academy, M. Plana has entered at great length into the theory of the resistance of
fluids to pendulums. This memoir contains, however, rather a detailed examination of various points connected
with the theory, than the determination of the resistance for any new form of pendulum. The author first treats the
case of an incompressible fluid, and then shews that the result would be sensibly the same in the case of an elastic
fluid. In the case of a ball pendulum, the only one in which a complete solution of the problem is effected, M.
Plana's result agrees with Poisson's.

In a paper read before the Cambridge Philosophical Society on the 29th of May 1843, and printed in the 8th
Volume of the Transactions, p. 105*, 1 have determined the resistance to a ball pendulum oscillating within a
concentric spherical envelope, and have pointed out the source of an error into which Poisson had fallen, in
concluding that such an envelope would have no effect . When the radius of the envelope becomes infinite, the
solution agrees with that which Poisson had obtained for the case of an unlimited mass of fluid. | have also
investigated the increase of resistance due to the confinement of the fluid by a distant rigid plane. The same paper
contains likewise the calculation of the resistance to along cylinder oscillating in a mass of fluid either unlimited,
or confined by a cylindrical envelope, having the same axis as the cylinder in its position of equilibrium. In the
case of an unconfined mass of fluid, it appeared that the effect of inertia was the same as if a mass equal to that of
the fluid displaced were distributed along the axis of the cylinder, so that n = 2 in the case of a pendulum
consisting of a long cylindrical rod. This nearly agrees with Baily's result for the long 1 %-inch tube ; but, on
comparing it with the results obtained with the cylindrical rods, we observe the same sort of discrepancy between
theory and observation as was noticed in the case of spheres. The discrepancy is, however, far more striking in the
present case, as might naturally have been expected, after what had been observed with spheres, on account of the
far smaller diameter of the solids employed.

* [Ante, Vol. 1. p. 179.]

A few years ago Professor Thomson communicated to me a very beautiful and powerful method which he had
applied to the theory of electricity, which depended on the consideration of what he called electrical images. The
same method, | found, applied, with a certain modification, to some interesting problems relating to ball
pendulums. It enabled me to calculate the resistance to a sphere oscillating in presence of afixed sphere, or within
a spherical envelope, or the resistance to a pair of spheres either in contact, or connected by a narrow rod, the
direction of oscillation being, in all these cases, that of the line joining the centres of the spheres. The effect of a
rigid plane perpendicular to the direction of motion is of course included as a particular case. The method even
applies, as Professor Thomson pointed out to me, to the uncouth solid bounded by the exterior segments of two
intersecting spheres, provided the exterior angle of intersection be a submultiple of two right angles. A set of
corresponding problems, in which the spheres are replaced by long cylinders, may be solved in a similar manner.
These results were mentioned at the meeting of the British Association at Oxford in 1847, and are noticed in the
volume of reports for that year, but they have not yet been published in detail.

The preceding are al the investigations that have fallen under my notice, of which the object was to calculate
from hydrodynamics the resistance to a body of given form oscillating as a pendulum. They all proceed on the
ordinary equations of the motion of fluids. They al fail to account for one leading feature of the experimental
results, namely, the increase of the factor n with a decrease in the dimensions of the body. They recognize no
distinction between the action of different fluids, except what arises from their difference of density.

In a conversation with Dr Robinson about seven or eight years ago on the subject of the application of theory to
pendulums, he noticed the discrepancy which existed between the results of theory and experiment relating to a
ball pendulum, and expressed to me his conviction that the discrepancy in question arose from the adoption of the
ordinary theory of fluid motion, in which the pressure is supposed to be equal in all directions. He also described to
me a remarkable experiment of Sir James South's which be had witnessed. This experiment has not been
published, but Sir James South has kindly allowed me to mention it. When a pendulum is in motion, one would
naturally have supposed that the air near the moving body glided past the surface, or the surface past it, which
comes to the same thing if the relative motion only be considered, with a velocity comparable with the absolute
velocity of the surface itself. But on attaching a piece of gold leaf to the bottom of a pendulum, so asto stick out in
a direction perpendicular to the surface, and then setting the pendulum in motion, Sir James South found that the
gold leaf retained its perpendicular position just as if the pendulum had been at rest ; and it was not till the gold
leaf carried by the pendulum had been removed to some distance from the surface, that it began to lag behind. This
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experiment shews clearly the existence of atangential action between the pendulum and the air, and between one
layer of air and another. The existence of a similar action in water is clearly exhibited in some experiments of
Coulomb's which will be mentioned in the second part of this paper, and indeed might be concluded from several
very ordinary phenomena, Moreover Dubuat, in discussing the results of his experiments on the oscillations of
spheres in water, notices a slight increase in the effect of the water corresponding to an increase in the time of
vibration, and expressly attributes it to the viscosity of the fluid.

Having afterwards occupied myself with the theory of the friction of fluids, and arrived at general equations of
motion, the same in essential points as those which had been previously obtained in a totally different manner by
others, of which, however, | was not at the time aware, | was desirous of applying, if possible, these equations to
the calculation of the motion of some kind of pendulum. The difficulty of the problem is of course materially
increased by the introduction of internal friction, but as | felt great confidence in the essential parts of the theory, |
thought that labour would not be ill-bestowed on the subject. | first tried along cylinder, because the solution of the
problem appeared likely to be simpler than in the case of a sphere. But after having proceeded a good way towards
the result, | was stopped by a difficulty relating to the determination of the arbitrary constants, which appeared as
the coefficients of certain infinite series by which the integral of a certain differential equation was expressed.
Having failed in the case of a cylinder, | tried a sphere, and presently found that the corresponding differential
equation admitted of integration in finite terms, so that the solution of the problem could be completely effected.
The result, | found, agreed very well with Baily's experiments, when the numerical value of a certain constant was
properly assumed ; but the subject was laid aside for some time. Having afterwards attacked a definite integral to
which Mr Airy bad been led in considering the theory of the illumination in the neighbourhood of a caustic, |
found that the method which | had employed in the case of this integral* would apply to the problem of the
resistance to a cylinder, and it enabled me to get over the difficulty with which | bad before been baffled. |
immediately completed the numerical calculation, so far as was requisite to compare the formulae with Baily's
experiments on cylindrical rods, and found a remarkably close agreement between theory and observation. These
results were mentioned at the meeting of the British Association at Swansea in 1848, and are briefly described in
the volume of reports for that year.

The present paper is chiefly devoted to the solution of the problem in the two cases of a sphere and of a long
cylinder, and to a comparison of the results with the experiments of Baily and others. Expressions are deduced for
the effect of afluid both on the time and on the arc of vibration of a pendulum consisting either of a sphere, or of a
cylindrical rod, or of a combination of a sphere and arod. These expressions contain only one disposable constant,
which has a very simple physical meaning, and which | propose to call the index of friction of the fluid. This
constant we may conceive determined by one observation, giving the effect of the fluid either on the time or on the
arc of vibration of any one pendulum of one of the above forms, and then the theory ought to predict the effect both
on the time and on the arc of vibration of all such pendulums. The agreement of theory with the experiments of
Baily on the time of vibration is remarkably close. Even the rate of decrease of the are of vibration, which it formed
no part of Baily's object to observe, except so far as was necessary for making the small correction for reduction to
indefinitely small vibrations, agrees with the result calculated from theory as nearly a& could reasonably be
expected under the circumstances.

* [Ante, Vol. I1.p. 328.]

It follows from theory that with a given sphere or cylindrical rod the factor n increases with the time of
vibration. This accounts in a good measure for the circumstance that Bessel obtained so large a value of k for air,
as is shewn at length in the present paper; though it unquestionably arose in a great degree from the increase of
resistance due to the close proximity of arigid plane to the swinging ball.

| have deduced the value of the index of friction of water from some experiments of Coulomb's on the
decrement of the are of oscillation of disks, oscillating in water in their own plane by the torsion of a wire. When
the numerical value thus obtained is substituted in the expression for the time of vibration of a sphere, the result
agrees almost exactly with Bessel's experiments with a sphere swung in water.

The present paper contains one or two applications of the theory of internal friction to problems which are of
some interest, but which do not relate to pendulums. The resistance to a sphere moving uniformly in afluid may be
obtained as a limiting case of the resistance to a ball pendulum, provided the circumstances be such that the square
of the velocity may be neglected. The resistance thus determined proves to be proportional, for a given fluid and a
given velocity, not to the surface, but to the radius of the sphere; and therefore the accelerating force of the
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resistance increases much more rapidly, as the radius of the sphere decreases, than if the resistance varied as the
surface, as would follow from the common theory. Accordingly, the resistance to a minute globule of water falling
through the air with its terminal velocity depends aimost wholly on the internal friction of air. Since the index of
friction of air is known from pendulum experiments, we may easily calculate the terminal velocity of a globule of
given size, neglecting the part of the resistance which depends upon the square of the velocity. The terminal
velocity thus obtained is so small in the case of small globules such as those of which we may conceive a cloud to
be composed, that the apparent suspension of the clouds does not seem to present any difficulty. Had the resistance
been determined from the common theory, it would have been necessary to suppose the globules much more
minute, in order to account in this way for the phenomenon. Since in the case of minute globules falling with their
terminal velocity the part of the resistance depending upon the square of the velocity, as determined by the
common theory, is quite insignificant compared with the part which depends on the internal friction of the air, it
follows that were the pressure equal in al directions in air in the state of motion, the quantity of water which
would remain suspended in the state of cloud would be enormously diminished. The pendulum thus, in addition to
its other uses, affords us some interesting information relating to the department of meteorology.

The fifth section of the first part of the present paper contains an investigation of the effect of the internal
friction of water in causing a series of oscillatory waves to subside. It appears from the result that in the case of the
long swells of the ocean the effect of friction is insignificant, while in the case of the ripples raised by the wind on
asmall pool, the motion subsides very rapidly when the disturbing force ceases to act.

PART I.

ANALYTICAL INVESTIGATION.

SECTION I.

Adaptation of the general equations to the case of the fluid surrounding a body which oscillates as a pendulum.
General laws which follow from the form of the equations. Solution of the equations in the case of an oscillating
plane.

1. IN a paper "On the Theories of the Internal Friction of Fluids in Motion, &c.*," which the society did me the
honour to publish in the 8th VVolume of their Transactions, | have arrived at the following equations for calculating
the motion of a fluid when the internal friction of the fluid itself is taken into account, and consequently the
pressure not supposed equal in al directions: with two more equations which may be written down from symmetry.
In these equations u, v, w, are the components of the velocity along the rectangular axes of x, y, z; X, Y, Z are the
components of the accelerating force ; p is the pressure, t the time, r the density, and m a certain constant
depending on the nature of the fluid.

The three equations of which (1) is the type are not the general equations of motion which apply to a
heterogeneous fluid when internal friction is taken into account, which are those numbered 10 in my former paper,
but are applicable to a homogeneous incompressible fluid, or to a homogeneous elastic fluid subject to small
variations of density, such as those which accompany sonorous vibrations. It must be understood to be included in
the term homogeneous that the temperature is uniform throughout the mass, except so far as it may be raised or
lowered by sudden condensation or rarefaction in the case of an elastic fluid. The general equations contain the
differentia coefficients of the quantity nwith respect to x, y, and z; but the equations of the form (1) are in their
present shape even more general than is required for the purposes of the present paper.

dp _ du du  du flﬁ) d'u  d'u gl’ﬂ,)
%_P<X_Ei_ud_w—v@ Yz +'u<dw"’+dy2+dz’
uwd (du dv dw)

s\t d

* [Ante. Vol. I. p. 75.]
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These equations agree in the main with those which had been previously obtained, on different principles, by
Navier, by Poisson, and by M. de Saint-Venant, as | have elsewhere observed*. The differences depend only on the
coefficient of the last term, and this term vanishes in the case of an incompressible fluid, to which Navier bad
confined his investigations.

The equations such as (1) in their present shape are rather complicated, but in applying them to the case of a
pendulum they may be a good deal simplified without the neglect of any quantities which it would be important to
retain. In the first place the motion is supposed very small, on which account it will be allowable to neglect the
terms which involve the square of the velocity. In the second place, the nature of the motion that we have got to
deal with is such that the compressibility of the fluid has very little influence on the result, so that we may treat the
fluid as incompressible, and consequently omit the last terms in the equations. Lastly, the forces X, Y, Z arein the
present case the components of the force of gravity, and if we write

p+ I +p [(Xde+ Ydy + Zdz)

For p, we may omit theterms X, Y, Z.

If 2* be measured vertically downwards from a horizontal plane drawn in the neighbourhood of the pendulum,
and if g bethe force of gravity, 0(Xdx + Ydy + Zdz) = gx', the arbitrary constant, or arbitrary function of the time if
it should be found necessary to suppose it to be such, being included in P . The part of the whole force acting on the
pendulum which depends on theterms P + g r z'is simply a force equal to the weight of the fluid displaced, and
acting vertically upwards through the centre of gravity of the volume.

* Report on recent researches in Hydrodynamics. Report of the British Association for 1846, p. 16. [Ante, VVol. I. p. 182.]

When simplified in the manner just explained, the equations such as (1) become

dp _ (@ d'u i’ﬁ)_ du
do~P\d# T ap T ar) TP at
dp dv  dwv  d% dv

op _ (G Gy dvN_ dv 2),
dy ”(dx’+dy’+dz2) Pt @)
dp (dw  dw  dw dw
2-r (@t gt @) e %)

which, with the equation of continuity,

du dv  dw
%4‘@'{'&;:0... ..................... (3),

are the only equations which have to be satisfied at all points of the fluid, and at all instants of time.

In applying equations (2) to a particular pendulum experiment, we may suppose mconstant ; but in order to
compare experiments made in summer with experiments made in winter, or experiments made under a high
barometer with experiments made under a low, it will be requisite to regard mas a quantity which may vary with
the temperature and pressure of the fluid. As far as the result of a single experiment*, which has been aready
mentioned, performed with a single elastic fluid, namely air, justifies us in drawing such a general conclusion, we
may assert that for agiven fluid at a given temperature mvariesasr +.

2. For the formation of the equations such as (1), 1 must refer to my former paper; but it will be possible, in a
few words, to enable the reader to form a clear idea of the meaning of the constant m

Conceive the fluid to move in planes paralel to the plane of xy, the motion taking place in a direction parallel
to the axis of y. The motion will evidently consist of a sort of continuous sliding, and the differential coefficient
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dv/dz may be taken as a measure of the rate of diding. In the theory it is supposed that in general the pressure
about a given point is compounded of a normal pressure, corresponding to the density, which being normal is
necessarily equal in all directions, and of an oblique pressure or tension, altering from one direction to another,
which is expressed by means of linear functions of the nine differential coefficients of the first order of u, v, w with
respect to x, y, z, which define the state of relative motion at any point of the fluid. Now in the special case
considered above, if we confine our attention to one direction,. that of the plane of xy, the total pressure referred to
a unit of surface is compounded of a normal pressure corresponding to the density, and a tangential pressure
expressed by mdv/dz, which tends to reduce the relative motion.

* Thefirst of the experiments described in Col. Sabine's paper, in which the gauge stood as high as 7 inches, leads to the same conclusion; but as
the vacuum apparatus had not yet been made stanch it is perhaps hardly safe to trust this experiment in a question of such delicacy.

+ [We now know that misindependent of r until excessive exhaustions are reached, far beyond any that we have here to deal with.]

In the solution of equations (2), malways appears divided by r. Let m= nir. The constant m may conveniently
be called the index of friction of the fluid, whether liquid or gas, to which it relates. As regards its dimensions, it
expresses a moving force divided by the product of a surface, a density, and the differential coefficient of a velocity
with respect to a line. Hence ni is the square of a line divided by a time, whence it will be easy to adapt the
numerical value of m to a new unit of length or of time.

3. Besides the general equations (2) and (3), it will be requisite to consider the equations of condition at the
boundaries of the fluid. For the purposes of the present paper there will be no occasion to consider the case of afree
surface, but only that of the common surface of the fluid and a solid. Now, if the fluid immediately in contact with
asolid could flow past it with afinite velocity, it would follow that the solid was infinitely smoother with respect to
its action on the fluid than the fluid with respect to its action on itself. For, conceive the elementary layer of fluid
comprised between the surface of the solid and a parallel surface at a distance h, and then regard only so much of
this layer as corresponds to an elementary portion dS of the surface of the solid. The impressed forces acting on the
fluid element must be in equilibrium with the effective forces reversed. Now conceive h to vanish compared with
the linear dimensions of dS, and lastly let dS vanish*. It is evident that the conditions of equilibrium will ultimately
reduce themselves to this, that the oblique pressure which the fluid element experiences on the side of the solid
must be equal and opposite to the pressure which it experiences on the side of the fluid. Now if the fluid could flow
past the solid with a finite velocity, it would follow that the tangential pressure called into play by the continuous
diding of the fluid over itself was no more than counteracted by the abrupt diding of the fluid over the solid. As
this appears exceedingly improbable a priori, it seems reasonable in the first instance to examine the consequences
of supposing that no such abrupt diding takes place, more especially as the mathematical difficulties of the
problem will thus be materially diminished. | shall assume, therefore, as the conditions to be satisfied at the
boundaries of the fluid, that the velocity of a fluid particle shall be the same, both in magnitude and direction, as
that of the solid particle with which it is in contact. The agreement of the results thus obtained with observation
will presently appear to be highly satisfactory. When the fluid, instead of being confined within a rigid envelope,
extends indefinitely around the oscillating body, we must introduce into the solution the condition that the motion
shall vanish at an infinite distance, which takes the place of the condition to be satisfied at the surface of the
envelope.

* To be quite precise it would be necessary to say, conceive h and dS to vanish together, h vanishing compared with the linear dimensions of dS;
for so long as dS remains finite we cannot suppose h to vanish atogether, on account of the curvature of the elementary surface: Such extreme
precision in unimportant matters tends, | think, only to perplex the reader, and prevent him from entering so readily into the spirit of an investigation.

To complete the determination of the arbitrary functions which would be contained in the integrals of (2) and
(3), it would be requisite to put t = 0 in the general expressions for u, v, w, obtained by integrating those equations,
and equate the results to the initial velocities supposed to be given. But it would be introducing a most needless
degree of complexity into the solution to take account of the initial circumstances, nor isit at all necessary to do so
for the sake of comparison of theory with experiment. For in a pendulum experiment the pendulum is set swinging
and then left to itself, and the first observation is not taken till several oscillations have been completed, during
which any irregularities attending the initial motion would have had time to subside. It will be quite sufficient to
regard the motion as already going on, and limit the calculation to the determination of the simultaneous periodic
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movements of the pendulum and the surrounding fluid. The arc of oscillation will go on slowly decreasing, but it
will be so nearly constant for several successive oscillations that it may be regarded as strictly such in calculating
the motion of the fluid; and having thus determined the resultant action of the fluid on the solid we may employ
the result in calculating the decrement of the arc of oscillation, as well as in calculating the time of oscillation.
Thus the assumption of periodic functions of the time in the expressions for u, v, w will take the place of the
determination of certain arbitrary functions by means of the initial circumstances.

4. Imagine a plane drawn perpendicular to the axis of x through the point in the fluid whose co-ordinates are X,
y, Z. Let the oblique pressure in the direction of this plane be decomposed into three pressures, a normal pressure,
which will be in the direction of x, and two tangential pressures in the directions of v, z, respectively. Let P; be the
normal pressure, and T3 the tangential pressure in the direction of y, which will be equal to the component in the
direction of x of the oblique pressure on a plane drawn perpendicular to the axis of y. Then by the formulae (7), (8)
of my former paper, and (3) of the present,

P2 ),
du dv

............... 5).

T, ,L(dy+dx) ......... (5)

These formulae will be required in finding the resultant force of the fluid on the pendulum, after the motion of the
fluid has been determined in terms of the quantities by which the motion of the pendulum is expressed.

5. Before proceeding to the solution of the equations (2) and (3) in particular cases, it will be well to examine
the general laws which follow merely from the dimensions of the several terms which appear in the equations.

Consider any number of similar systems, composed of similar solids oscillating in a similar manner in different
fluids or in the same fluid. Let a, a', a"... be homologous lines in the different systems; T, T',T"... corresponding
times, such for example as the times of oscillation from rest to rest. Let x, y, z be measured from similarly situated
origins, and in corresponding directions, and t from corresponding epochs, such for example as the
commencements of oscillations when the systems are beginning to move from a given side of the mean position.

The form of equations (2), (3) shews that the equations being satisfied for one system will be satisfied for all the
systems provided

MU puz
uocvocw,mocyocz,andpoc?ocT.

The variations x g y 1 z merely signify that we must compare similarly situated points in inferring from the
circumstance that (2), (3) are satisfied for one system that they will be satisfied for all the systems. If c, c', ¢"... be
the maximum excursions of similarly situated points of the fluids

c
U 75, rzxa,te T,

and the sole condition to be satisfied, in addition to that of geometrical similarity, in order that the systems should
be dynamically similar, becomes

This condition being satisfied, similar motions will take place in the different systems, and we shall have

pa ‘.’I“T“ ............................. ().
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It follows from the equations (4), (5), and the other equations which might be written down from symmetry, that
the pressures such as Py, T; vary in the same manner as p, whence it appears from (7) that the resultant or
resultants of the pressures of the fluids on the solids, acting along similarly situated lines, which vary as pa?, vary
asra® and cT72 conjointly. In other words, these resultants in two similar systems are to one another in a ratio
compounded of the ratio of the masses of fluid displaced, and of the ratio of the maximum accelerating effective
forces belonging to similarly situated points in the solids.

6. In order that two systems should be similar in which the fluids are confined by envelopes that are sufficiently
narrow to influence the motion of the fluids, it is necessary that the envelopes should be similar and similarly
situated with respect to the solids oscillating within them, and that their linear dimensions should be in the same
ratio as those of the oscillating bodies. In strictness, it is likewise necessary that the solids should be similarly
situated with respect to the axis of rotation. If however two similar solids, such as two spheres, are attached to two
fine wires, and made to perform small oscillations in two unlimited masses of fluid, and if we agree to neglect the
effect of the suspending wires, and likewise the effect of the rotation of the spheres on the motion of the fluid,
which last will in truth be exceedingly small, we may regard the two systems as geometrically similar, and they
will be dynamically similar provided the condition (6) be satisfied. When the two fluids are of the same nature, as
for example when both spheres oscillate in air, the condition of dynamical similarity reduces itself to this, that the
times of oscillation shall be as the squares of the diameters of the spheres.

If, with Bessel, we represent the effect of the inertia of the fluid on the time of oscillation of the sphere by
supposing a mass equal to it times that of the fluid displaced added to the mass of the sphere, which increases its
inertia without increasing its weight, we must expect to find k dependent on the nature of the fluid, and likewise on
the diameter of the sphere. Bessdl, in fact, obtained very different values of k for water and for air. Baily's
experiments on spheres of different diameters, oscillating once in a second nearly, shew that the value of k
increases when the diameter of the sphere decreases. Taking this for the present as the result of experiment, we are
led from theory to assert that the value of k increases with the time of oscillation; in fact, k ought to be as much
increased as if we had left the time of oscillation unchanged, and diminished the diameter in the ratio in which the
square root of the time is increased. It may readily be shewn that the value of k obtained by Bessdl's method, by
means of along and short pendulum, is greater than what belongs to the long pendulum, much more, greater than
what belongs to the shorter pendulum, which oscillated once in a second nearly. The value of k given by Bessdl is
in fact considerably larger than that obtained by Baily, by a direct method, from a sphere of nearly the same size as
those employed by Bessdl, oscillating once in a second nearly.

The discussion of the experiments of Baily and Bessel belongs to Part I1. of this paper. They are merely briefly
noticed here to shew that some results of considerable importance follow readily from the general equations, even
without obtaining any solution of them.

7. Before proceeding to the problems which mainly occupy this paper, it may be well to exhibit the solution of
equations (2) and (3) in the extremely simple case of an oscillating plane.

Conceive a physical plane, which is regarded as infinite, to be situated in an unlimited mass of fluid, and to be
performing small oscillations in the direction of a fixed line in the plane. Let a fixed plane coinciding with the
moving plane be taken for the plane of yz, the axis of y being parallel to the direction of motion, and consider only
the portion of fluid which lies on the positive side of the plane of yz. In the present case, we must evidently have u
=0,w=0; and p, v will be functions of x and t, which have to be determined. The equation (3) is satisfied
identically, and we get from (2), putting m= rir,

dp _ dv_ ., d%
a} = 0, % = (7‘;2 ...................... (8).

The first of these equations gives p = a constant, for it evidently cannot be a function of t, since the effect of the
motion vanishes at an infinite distance from the plane; and if we include this constant in P, we shall have p = 0.
Let V bethe velocity of the planeitself, and suppose
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Putting in the second of equations (8)

v=Xsinnt+ X,C08nl ...o0vriniininnnnn. (10),

,deX ,de 2 )
weget nX,=p - 5t nX,=—w %2‘=—’%—d—wf ...... (11).

The last of these equations gives

X2=e'~/2%x(Asin \/2%‘,:0+Bcosx/21;,x>
Jén_"‘(C i \/—n—,a:+Dcos \/ﬂ,m>
+ eV 2w sin 2“ 2#

Since X. must not become infinite when x = ¥, we must have C = 0, D = 0. Obtaining X; from the first of equations
(11), and substituting in (10), we get

V= e—‘\/2_:’z{_ASiIl (nt— \/Lw> 4+ Bcos (nt— '\/——n—,x)}
2u 2u

Now by the equations of conditions assumed in Art. 3, we must have v =V when x = 0, whence

_ .. n
v = ce s/z;tx sin (nt - \/Z:, m) ............... (12).

To find the normal and tangential components of the pressure of the fluid on the plane, we must substitute the
above vaue of v in the formulae (4), (5), and after differentiation put x = 0. P4, T3 will then be the components of
the pressure of the solid on the fluid, and therefore -P4, - T, those of the pressure of the fluid on the solid. We get

P=0, T;=cp «/@5 (sinnt+cosnt)=p \/%’ui (V+}z%>"'(l3)'

The force expressed by the first of these terms tends to diminish the amplitude of the oscillations of the plane. The
force expressed by the second has the same effect as increasing the inertia of the plane.

8. The equation (12) shews that a given phase of vibration is propagated from the plane into the fluid with a
velocity (2mn), while the amplitude of oscillation decreases in geometric progression as the distance from the
plane increases in arithmetic. If we suppose the time of oscillation from rest to rest to be one second, n = p ; and if
we suppose ,Oni = .116 inch, which, as will presently be seen, is about its value in the case of air, we get for the
velocity of propagation .2908 inch per second nearly. If we enquire the distance from the plane at which the
amplitude of oscillation is reduced to one-half, we have only to put

N(n/2u) 2 =log.2,

which gives, on the same suppositions as before respecting numerical values, x = .06415 inch nearly. For water the
value of m is a good deal smaller than for air, and the corresponding value of x smaller likewise, since it varies
caeteris paribus as Om. Hence if asolid of revolution of large, or even moderately large, dimensions be suspended
by a fine wire coinciding with the axis of revolution, and made to oscillate by the torsion of the wire, the effect of
the fluid may be calculated with a very close degree of approximation by regarding each element of the surface of
the solid as an element of an infinite plane oscillating with the same linear velocity*.

10
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For example, let acircular disk of radius a be suspended horizontally by a fine wire attached to the centre, and
made to oscillate. Let r be the radius vector of any element of the disk, measured from its centre, q the angle
through which the disk has turned from its mean position. Then in equation (13), we must put V = r dg/dt, whence

T = ' (d_‘9 1d'9
LS VARV ndt”)'

The area of the annulus of the disk comprised between the radii r and r + dr is 4p rdr, both faces being taken, and
if G be the whole moment of the force of the fluid on the disk,

G=- 417] rTdr,

o

o u o (dO 1 d%
@= ”’P“\/z (dt+55l?)'

Let Mg2 be the moment of inertia of the disk, and let n; be what n would become if the fluid were removed, so that -
n,? Mcfq is the moment of the force of torsion. Then when the fluid is present the equation of motion of the disk
becomes

whence

’ dqo ’
(Mfy’ + mpat \/%) T mpat %"- ;Zl—i + 0 M6 =0...(14),

or, putting for shortness

l‘;’
mpat , /- =280y,

&0 i
which gives, neglecting b?,
0 =0, " 8in (NE4+ &) voveereernnnnnnn.. (15),
where
n=n (1-4).

[That is, of course, on the supposition that the oscillations are not excessively sow.]

The observation of n and n;, or else the observation of n and of the decrement of the arc of oscillation, would
enable us to determine b, and thence m The values of b determined in these two different ways ought to agree.

There would be no difficulty in obtaining a more exact solution, in which the decrement of the are of oscillation
should be taken into account in calculating the motion of the fluid, but | pass on to the problems, the solution of
which forms the main object of this paper.

SECTION 1.

Solution, of the equations in the case of a sphere oscillating in a mass of fluid either unlimited, or confined by a
spherical envelope concentric with the sphere in its position of equilibrium.

11
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9. Suppose the sphere suspended by a fine wire, the length of which is much greater than the radius of the
sphere. Neglect for the present the action of the wire on the fluid, and consider only that of the sphere. The motion
of the sphere and wire being supposed to take place parallel to afixed vertical plane, there are two different modes
of oscillation possible. We have here nothing to do with the rapid oscillations which depend mainly on the rotatory
inertia of the sphere, but only with the principal oscillations, which are those which are observed in pendulum
experiments. In these principal oscillations the centre of the sphere describes a small are of a curve which is very
nearly a circle, and which would be rigorously such, if the line joining the centre of gravity of the sphere and the
point of attachment of the wire were rigorously in the direction of the wire. In calculating the motion of the fluid,
we may regard this arc as a right line. In fact, the error thus introduced would only be a small quantity of the
second order, and such quantities are supposed to be neglected in the investigation. Besides its motion of
tranglation, the sphere will have a motion of rotation about a horizontal axis, the angular motion of the sphere
being very nearly the same as that of the suspending wire. This motion, which would produce absolutely no effect
on the fluid according to the common theory of hydrodynamics, will not be without its influence when friction is
taken into account; but the effect is so very small in practical cases that it is not worth while to take it into account.
For if a be the radius of the sphere, and | the length of the suspending wire, the velocity of a point in the surface of
the sphere due to the motion of rotation will be a small quantity of the order a/l compared with the velocity due to
the motion of tranglation. In finding the moment of the pressures of the fluid on the pendulum, forces arising from
these velocities, and comparable with them, have to be multiplied by lines which are comparable with a, I,
respectively. Hence the moment of the pressures due to the motion of rotation of the sphere will be a small quantity
of the order a1, compared with the moment due to the motion of translation. Now in practice | is usually at least
twenty or thirty times greater than a, and the whole effect to be investigated is very small, so that it would be quite
useless to take account of the motion of rotation of the sphere.

The praoblem, then, reduces itself to this. The centre of a sphere performs small periodic oscillations along a
right line, the small sphere itself having a motion of translation simply: it is required to determine the motion of
the surrounding fluid.

10. Let the mean position of the centre of the sphere be taken for origin, and the direction of its motion for the
axis of x, so that the motion of the fluid is symmetrical with respect to this axis. Let v be the perpendicular let fall
from any point on the axis of X, g the velocity in the direction of v, w the angle between the linev and the plane of
xy. Then p, u, and g will be functions of x, v, and t, and we shall have

v=gcosw, w=¢sinw, y=wcosw, Zz=w8inw,
whence

oy
wl=y"+ 7, w=tan™=.

We have now to substitute in equations (2) and (3), and we are at liberty to put w = O after differentiation; We
get

—— = €08 i_s_m_ali ——d—whenw'—O
dy © dw @ do’ do o
d
W=d—ﬁ-r§Whenw=O,
whence we obtain
dp _ (d'u  d'u ldu)_ du 16
'(-l—m—[b((‘i?-l—'d—a_g 1;'&; pdt .................. ( ),
dp _ (d'q dq 1dg ¢ dgq 1
‘d_m_—,lli(d?'i'z;,'i';a—; ;;)—'pdt............( 7),
Qu Q9 T, (18).

dr dw ©

12
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Eliminating p from (16) and (17), and putting for mits equivalent nir , we get

—

,d (dd 4 1d L d /b4
¥ iw (it dert 2 ) 2 (a2 i
1d 1 d (du dg\_
Yo tem o) ) ="
@  d  1d 1 1d\/du dg
(d;ﬁa;ﬁ;;z;“;t'm)(%‘@)”0'-”“9)'
By virtue of (18), w (udw - gdx) is an exact differential. Let then
W (udw - gqdx) = d* ., (20).

Expressing u and g in terms of y , we get

du dg 1/d & 1d
d—w‘d—x—;(ﬁﬁg;e‘wdw)""

Substituting in (19), and operating separately on the factor v, we obtain

& & 1d 1dy/d& 4 14d ’
o = 2 22V 4 = = o ) =0...(20).
(dw2+dw’ wdo K dt) (dw’+dw’ wdw)#’ 0...(20)

Since the operations represented by the two expressions within parentheses are evidently convertible, the
integral of this equation is
Y= ¥ i (21),

* |f we denote for shortness the operation by D, our equation becomes

which gives by the separation of symbols

R T B (T P

so that dy /dt is composed of two parts, which are separately the integrals of (22), (23). Hence we have for theintegral of (20)Y =yi1+Y.+Y,Y
being a function of x and v without t which satisfies the equation D Y = 0. For the equations (22), (23) will not be altered if we put ¢y 1dt.dy »dt for
Y 1, Y 2, the arbitrary functions which would arise from the integration with respect to t being supposed to be included in Y. The function Y, which
taken by itself can only correspond to steady motion, is excluded from the problem under consideration by the condition of periodicity. But we may
even, independently of this condition, regard (21) as the complete integral of (20"), provided we suppose included in (21) terms which would be
obtained by supposing Y at first to vary slowly with the time, employing the integrals of (22) and (23), and then making the rate of variation diminish
indefinitely. By treating the symbolical expression in the right-hand member of equation (a) as a vanishing fraction, d/dt being supposed to vanish, we
obtain in fact D2 0 ; so that under the convention just mentioned the function Y may be supposed to be included iny ; + y ». The same remarks will
apply to the equation in Section I11. which answersto (20').

a & 14
det T dw? wdw

wherey ; vy, aretheintegrals of the equations

13
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a &

(ot g dw)"’x T (22),
& d 1d 1d
<t%§+d‘m_g—;'d;—’72t)‘\ll"=o ............ (23).

11. By means of the last three equations, the expression for dp obtained from (16) and (17) is greatly
simplified. We get, in the first place,

ldp (/& , & 14 1dy
pd.z‘ { (dxa'l' 2+ ) dt} ...... (24'):

= dw wdo

but by adding together equations (22) and (23), and taking account of (21), we get

dy Ty, 1dy 14y,

=

dr* de* " wdw ' p dt "

On substituting in (24), it will be found that al terms in the right-hand member of the eguation destroy one
another, except those which contain dy /dt and dy »/dt, and the equation is reduced to

dp_ _p &Y,

dz = dtde’

The equation (17) may be reduced in a similar manner, and we get finally

(l’\[r, - LA ST D 25),
(dtda; i didw d.z:) ....... ( 3)

which is an exact differential by virtue of (22).

12. Passing to polar co-ordinates, let r be the radius vector drawn from the origin, q the angle which r makes
with the axis of x, and let R be the velocity along the radius vector, Q the velocity perpendicular to the radius
vector: then

z=rcosf, w=rsinb, u=Rcos§—Osiné, q=Rsin0+®cos€.

Making these substitutions in (20), (22), (23), and (25), we obtain

rsin @ (Rrdf —Odr) =dyr...cccooeeeeennne. (26),
T ynfd (SI_I];_G ) =0 @,
%{’;’ + S“T‘ 0 (z, (Sli 0‘2";*) i %%‘: 0......(28),
dp =L @;‘5; rdd — : ft\gb dr) ......... (29).

We must now determine y; and y, by means of (27) and (28), combined with the equations of condition.
When these functions are known, p will be obtained by integrating the exact differential which forms the
right-hand member of (29), and the velocities R, Q, if required, will be got by differentiation, as indicated by
equation (26). Formulae deduced from (4) and (5) will then make known the pressure of the fluid on the sphere.

14
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13. Let x be the abscissa of the centre of the sphere at any instant. The conditions to be satisfied at the surface
of the sphere are that when r = ry, the radius vector of the surface, we have

df ——snp%
R=0089%, @——smodt.

Now r, differs from a by a small quantity of the first order, and since this value of r has to be substituted in
functions which are already small quantities of that order, it will be sufficient to put r = a. Hence, expressing R and
Qintermsof y, we get

df .. dE dY df - 300,
E;-asm’ﬁdt, W—a’smﬂcosedt, when r=a .....(30)

When the fluid is unlimited, it will be found that certain arbitrary constants will vanish by the condition that
the motion shall not become infinite at an infinite distance in the fluid. When the fluid is confined by an envelope
having aradius b, we have the equations of condition

dyr dy . _ ;
d—r_o’ 8—6——0, whenr="> .....cooouins (31).

14. We must now, in accordance with the plan proposed in Section I., introduce the condition that the function
x shall be composed, so far as the time is concerned, of the circular functions sin nt and cos nt, that is, that it shall
be of the form
P sinnt+ @ cos nt,

where P and Q are functions of r and q only. An artifice, however, which has been extensively employed by M.
Cauchy will here be found of great use. Instead of introducing the circular functions sin nt and cos nt, we may
employ the exponentials e ©*™and e . Since our equations are linear, and since each of these exponential functions
reproduces itself at each differentiation, it follows that if all the terms in any one of our equations be arranged in
two groups, containing as a factor < in one case, and e« in the other, the. two groups will be quite independent,
and the equations will be satisfied by either group separately. Hence it will be sufficient to introduce one of the
exponential functions. We shall thus have only haf the number of terms to write down, and half the number of
arbitrary constants to determine that would have been necessary had we employed circular functions. When we
have arrived at our result, it will be sufficient to put each equation under the form U + O-1 V = 0, and throw away
the imaginary part, or else throw away the real part and omit O-1, since the system of quantities U and the system
of quantities V must separately satisfy the equations of the problem. Assuming then

d& vV 1nt _ N-Int
dt y=e TP

;- = C€ s

we have to determine P as a function of r and g.

15. The form of the equations of condition (30) points out sin? q as a factor of P, and since the operation

g8 1 d

S Y 39 sin 6 do
performed on the function sin? q reproduces the same function with a coefficient -2, it will be possible to satisfy
equations (27) and (28) on the supposition that sin® q isafactor of y; and y ,*.

* When this operation is performed on the function sin q dY; /dg the function is reproduced with a coefficient -i(i + 1). Y; here denotes a Laplace's
function of the i"" order, which contains only one variable angle, namely g. Now Y may be expanded in a series of quantities of the general form sin g
dY;/dg. For, since we are only concerned with the differential coefficients of Y with respect to r and g, we have a right to suppose Y to vanish at

15
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whatever point of space we please. Lettheny =O0whenr=aandq =0. To find the value of Y at a distance r from the origin, along the axis of x
positive, it will be sufficient to put g = 0, dq = 0in (26), and integrate fromr = a tor, whencey = 0. To find the value of Y , at the same distance r
along the axis of x negative, it will be sufficient to leave r constant, and integratedy fromq =0toq = p Referring to (26), we see that the integral
vanishes, since the total flux across the surface of the sphere whose radius is r must be equal to zero. Hencey vanisheswhenq=0or = p, and it
appears from (26) that when q is very small or very nearly equal top , Y varies ultimately as sin’q for given valuesof r and t. Hencey cosec g, and
therefore &/ cosec q dg, is finite even when sin q vanishes, and therefore (y cosec g dg may be expanded in a series of Laplace's functions, and
therefore Y itself in aseries of quantities of the form sin g d;/dq. It was somewhat in thisway that | first obtained the form of the functiony .

Assume then
A = VT I £(), = eV sin’0 f(r).

Putting for convenience

fr@=ac, fla)=3a%c i (35),
FB)=0, fB)=0 .o (36).

We may obtain p from (29) by putting for y ; its value €™ sin® q f,(r), replacing after differentiation 2fy(r) by
its equivalent r?f,"(r), and then integrating. It is unnecessary to add an arbitrary function of the time, since any
such function may be supposed to be included in P. We get

p=—pumie™cos 0f (r) c.coorvnninnn (37).

16. Theintegration of the differential equation (33) does not present the least difficulty, and (34) comes under a
well-known integrable form. The integrals of these equations are

for= e

-mr 1 mr 1 ...........
fir) = Ce (1 + %) + De (1 - 7;»7») |

and we have to determine A, B, C, D by the equations of condition.

The solution of the problem, in the case in which the fluid is confined by a spherical envelope, will of course
contain as a particular case that in which the fluid is unlimited, to obtain the results belonging to which it will be
sufficient to put b = ¥ . As, however, the case of an unlimited fluid is at the same time simpler and more
interesting than the general case, it will be proper to consider it separately.

Let +m denote that square root of ni'nO-1 which hasits rea part positive; then in equations (38) we must have
D = 0, since otherwise the velocity would be infinite at an infinite distance. We must aso have B = 0, since
otherwise the velocity would be finite when r = ¥ as appears from (36). We get then from the equations of
condition (35)

3a’c 1 3ac
4_. 3 . —_— —_——— ™
=}a%+ 2m(1+ma)’ ¢ om €
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whence
f— m G“Im2’ ........................... (39),
B 3 3 \a
1.2 2 32 I B had
¥ = }a’ce* ™ sin’ 0 {(1 +oat 'm’a’) -
_3 (1 + l) el e, (40),
ma mr §
2
p = pacu'm? (1 + ﬁ?’a + m?a’) e“m* cos @ % ......... (41).

17. The symbolical equations (40), (41) contain the solution of the problem, the motion of the sphere being
defined by the symbolical equation (39). If we wish to exhibit the actual results by means of real quantities alone,
we have only to put the righthand members of equations (39), (40), (41) under the form U+ G-1 V, and reject the
imaginary part. Putting for shortness

\/ 2% SV e 42),

we havem =v (1 + G-1), and we obtain

E= %sin A (43),

4 oo sint Heosnt g (14 ainni |
Y =4 a’csin 6{[(1+2m cosnt+2m 1+va sinag |

3 erir-a \:cos (nt—vr+va)

2va
+ (1 + ;;) sin (nt —vr + va)]} ............ (44),
=-1 <1+ —3—> sin n¢
p= pacn 5o
3 1 o ]
- 27:‘(1 + ;;—a) cos nt} cos 6. pe TSI (45).

The reader will remark that the x, y, p of the present article are not the same as the x, y, p of the preceding.
The latter are the imaginary expressions, of which the real parts constitute the former. It did not appear necessary
to change the notation.

Whenm=0,v=¥ andy reducesitself to

a’c . @’ . o, ,dE
3, sin 8 cos nt, or 5 sin 0dt'
In this case we get from (26)
dEcos 8 dfsin 6
Bea G R0, e=hegt

and Rdr + Q rdq is an exact differential df where

17
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_ s A€ cos @
po—i g

which agrees with the result deduced directly from the ordinary equations of hydrodynamics*.

* See Camb. Phil. Trans. Val. VIII. p. 119. [Ante, Vol. |. p. 41]

18. Let us now form the expression for the resultant of the pressures of the fluid on the several elements of the
surface of the sphere. Let P,, be the normal, and T, the tangential, component of the pressure at any point in the
direction of a plane drawn perpendicular to the radius vector. The formulae (4), (5) are general, and therefore we
may replace x, y in these formulae by x', y', where x' y* are measured in any two rectangular directions we please.
Let the plane of X' y' pass through the axis of x and the radius vector, and let the axis of X' be inclined to that of x at
an angle J which after differentiation is made equal to ¢. Then P4, Ts. will become Py, Tq, respectively. We have

w=Rcos (0 -9)—Osin (6 -9),
v =Rsin (0 —%)+Ocos (§ —9),

andwhenq=1J

do — dr’ dy ~ rd8’
di'_dR dv_dR ® dv d®

dd —dr’ dy rd6” 7’ d& dr’

whence
dR dR d® 0
Po=p-2 g To"*‘(ﬁé*?ﬁ‘?)

In these formulae, suppose r put equal to a after differentiation. Then P, Ty, will be the components in the
direction of r, g of the pressure of the sphere on the fluid. The resolved part of these in the direction of x is

P_cos 6 — Tysin 6,

which is equal and opposite to the component, in the direction of x of the pressure of the fluid on the sphere. Let F
be the whole force of the fluid on the sphere, which will evidently act along the axis of x. Then, observing that 2p
a’sin q dq isthe area of an elementary annulus of the surface of the sphere, we get

- f " (= P.cosf+ Tysin ), sin 040 ........(47),
[}

the suffix a denoting that r is supposed to have the value a in the general expressions for P, and Tg,.

The expression for F may be greatly simplified, without employing the solution of equations (27), (28), by
combining these equations in their original state with the equations of condition (30). We have, in the first place,
from (26)

1 dy g _ L ¥ (48).

TV T g eeesecasniss

= Fsn6df’ ~  rsin@dr

Now the equations (30) make known the values of y and dy /dr and of their differential coefficients of all orders
with respect to g, when r = a. When the expressions for R and Q are substituted in (46), the result will contain only
one term in which the differentiation with respect to r rises to the second order. But we get from (21), (27), (28)
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dg\"_. Sinoii_(__l_fd_‘_p‘).*.ld_‘l’.?
AT T o dO\sinf@dld) " w dt’

and the second of equations (30) givesthe value for r = a of the first term in the right-hand member of the equation
just written. We abtain from (48) and (30)
(‘L) =0,
T/a

d
()45

a dt

0
(%)a T atin 0 (d%;})a )

Substituting in (47), and writing nir for m we get

<

i~
]

i

4 AR
F= 27raf0 {— apg cosf+p <_df)a} sin 6d6.

With respect to the first term in this expression, we get by integration by parts
0 sin8df = sin*0.p — 3 [sin*0 %L a6
fp cos 6 sin = .p a8 %%

The first term vanishes at the limits. Substituting in the second term for dp/dq the expression got from (29),
and putting r = a, we get

[:pa cos Osin 88 = — }p Edt [0 (%). sin 8 d6.

Substituting in the expression for F, we get

F=mpa d%_ [ o {a (dd";*)a 12 (@),,} sin 0.d6......(49).

19. The above expression for |, being derived from the general equations (27), (28), combined with the
equations of condition (30), holds good, not merely when the fluid is confined by a spherical envelope, but
whenever the motion is symmetrical about an axis, and that, whether the motion of the sphere be or be not
expressed by a single circular function of the time. It might be employed, for instance, in the case of a sphere
oscillating in a direction perpendicular to afixed rigid plane.

When the fluid is either unconfined, or confined by a spherical envelope concentric with the sphere in its
position of equilibrium, the functions y, y, consist, as we have seen, of sin® q multiplied by two factors
independent of g. If we continue to employ the symbolical expressions, which will be more convenient to work
with than the real expressions which might be derived from them, we shall have

VIE (r), VTS (),

for these factors respectively. Substituting in (49), and performing the integration with respect to g, we get
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F=4mpan/—1 {of, (a) + 2f, (@)} V" .......... (50).

20. Consider for the present only the case in which the fluid is unlimited. The arbitrary constants which appear
in equations (38) were determined for this casein Art. 16. Substituting in (50) we get

— 9 9 —
F=—§rpasan—1<1 +m—a+m,> eV-in

Putting for m itsvaluev (1 + G-1), and denoting by M' the mass of the fluid displaced by the sphere, which is equal
to4/3pr a°, we get

F=—M'cn{(1}+ )'s/ 1+4—9~(l+ 1)}6\/——11;6;

whence

)M'dgf- 9 ( + )M' @ .. (51).

F=- (% + dva df " dva dt

a

Since O-1 has been eliminated, this equation will remain unchanged when we pass from the symbolical to the real
values of F and x.
Lett bethe time of oscillation from rest to rest, so that nt = p, and put for shortnessk, k' for the coefficients of

M"in (51); then
T 9 ] 1
"=\/§,T'T' bbb K=o (14 50) 59

The first term in the expression for the force F has the same effect as increasing the inertia of the sphere. To take
account of this term, it will be sufficient to conceive a mass kM' collected at the centre of the sphere, adding to its
inertia without adding to its weight. The main effect of the second term is to produce a diminution in the are of
oscillation: its effect on the time of oscillation would usualy be quite insensible, and must in fact be neglected for
consistency's sake, because the motion of the fluid was determined by supposing the motion of the sphere
permanent, which is only allowable when we neglect the square of the rate of decrease of the arc of oscillation.

If we form the equation of motion of the sphere, introducing the force F, and then proceed to integrate the
equation, we shall obtain in the integral an exponential €™ multiplying the circular function, d being half the
coefficient of dx/dt divided by that of dx?/dt?. Let M be the mass of the sphere, Mg? its moment of inertia about the
axis of suspension, then

M (14 a)? =28 (Mo + kM’ (I +a)}.

In considering the diminution of the arc of oscillation, we may put | + a for g During i oscillations, let the arc of
oscillation be diminished in the ratio of Aq to A;, then

A, m KM
log.z—@TS——é— M+I{)M’ ..................

For a given fluid and a given time of oscillation, both k and k’ increase as a decreases. Hence it follows from
theory, that the smaller be the sphere, its density being supposed given, the more the time of oscillation is affected,
and the more rapidly the arc of oscillation diminishes, the alteration in the rate of diminution of the are due to an
alteration in the radius of the sphere being more conspicuous than the alteration in the time of oscillation.

21. Let us now suppose the fluid confined in a spherical envelope. In this case, we have to determine the four
arbitrary constants which appear in (38) by the four equations (35) and (36). We get, in the first place,
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’A' 2 ~ma 1 m 1

a‘ + Ba/ + 06 (1 + m-—a) + .DG (1 - ’I']_’),Z]) = %aac ......... (54'),
—é+2Ba’—-C’e"”"(ma+1+—1 >+D " (ma~1+ =) =g

a ma et o) = (55),

A 1

- Bb2 —~mb mb 1

b + + C¢ <1 + W_Lb) + De (1 — 1—nb) =0............. (56),
A

-z 2Bb*—Ce™ (mb +1 +,,%> + De™ (mb—1+w%7))=0 (7).

Putting a2cK for af;'(a) + 2 f,'(a), which is the quantity that we want to find, we get from (38) and (54)
34
H=1-0o (58).

GBp e,

Eliminating in succession B from (54) and (55), from (56) and (57), and from (54) and (56), we shall obtain for the
determination of A, C, D three equations which remain unchanged when a and b are interchanged, and the signs of
A, C, and D changed. Hence -A, -C, -D are the same functions of b and a that A, C, D are of a and b. It will also
assist in the further elimination to observe that C and D are interchanged when the sign of m is changed. The
result of the elimination is

3b B)—n(b
K=1-_2___n0@b-n(a
2mla’ 12mad + C(a’ b) T g(b’ a) ......... (59)’

the functions z, h being defined by the equations

7 (a, b) = (m*a* + 3ma + 3) (m%* — 3mb + 3) "
£(a, b) ={b(m*B*—8mb+3)—a (m*a*+3ma+3)} e"‘""”’}

It turns out that K is a complicated function of m and ab™ and the algebraical expressions for the quantities
which answer to k and k' in Art. 20 would be more complicated still, because v (1 + G-1) would have to be
substituted for m in (60) and (59), and then K reduced to the form - k + O-1 k’. To obtain numerical results from
these formulag, it would be best to substitute the numerical values of a, b, and v in (60) and (59), and perform the
reduction of K in figures.

22. If the distance of the envelope from the surface of the sphere be at all considerable, the exponential €® -2,
which arises from €"® ~® will have so large a numerical value that we may neglect the terms in the numerator and
denominator of the fraction in the expression for K which contain €'® = as well as the term in the denominator
which is free from exponentials, in comparison with the terms which contain €® . Thus, if b - a be two inches, t
one second, and O = .116 we have e "® = = 2424000000, nearly; and if b - a be only an inch or half an inch, we
have still the square or fourth root of the above quantity, that is, about 49234 or 222, for the value of that
exponential. Hence, in practical cases, the above simplification may be made, which will cause the exponentials to
disappear from the expression for K. We thus get

3b (m*a® + 3ma + ) (m*b* — 3mb + 3)

K=1- 2m'a’ b (m’b* — 3mb + 3) — a (m*a®* + 3ma + 3) "

(61).

If we assume
Sva + 3 + (2va® + 3va) V— 1 = A’ (cos a + ¥ =1 sin «),
—3ub+ 8+ (200 — 3vb) =1 =B (cos 8+~ —1sinR),

bB cos B—ad’ cosa=C"cosy,
bB sin B—ad sina= (' siny,

21



ON THE EFFECT OF THE INTERNAL FRICTION OF FLUIDS ON THE MOTION OF PENDULUMS

we get from (61)

VZ1 A'B —5
K=1+§ﬁw_,ﬁr@w@+ﬁ—w+v—lmnm+ﬁ—wh
whence
3bA'B .
=1%Qgsm(a+13—'¥)—1
......... (62);
, SbA’BI
Ic=mcos(a+8—'¥); ]

and, as before, kM' is the imaginary mass which we must conceive to be collected at the centre of the sphere, in
order to alow for the inertia of the fluid, and - k'M’n dx/dt the term in F on which depends the diminution in the
arc of oscillation.

23. If we suppose mi = 0, and therefore m = ¥, we get from (61)

_ b +2°
L L T (63),

and, in this case, k is the same as with K sign changed, and k' = 0, which agrees with the result obtained directly
from the ordinary equations of hydrodynamics*. If, on the other hand, we make b = ¥, we arrive at the results
already obtained in Art. 20. In both these cases it becomes rigorously exact to neglect in the expression for K - 1
given by (59) all the terms which are not multiplied by €® .

If the effect of the envelope be but small, which will generally be the case, it will be convenient to calculate k
and k' from the formulae (52), which apply to the case in which b =¥ | and then add corrections Dk, Dk’ due to the
envelope. We get from (61)

v = B (m'a® + 3ma + 8)°
A - - =
¢ 1Ak 2m’a b(m'b’'—3mb +3) —a (m’a’+3ma+3)" (64),

which may be treated, if required, as the equation (61) was treated in the preceding article. If, however, we suppose
m large, and are content to retain only the most important term in (64), we get simply

3a®
Ak = 2(b3—-a’) ’
so that the correction for the envelope may be calculated as if the fluid were destitute of friction.

* See Camb. Phil. Trans. Vol. VIII p. 120. [Ante, Vol, | p. 41]

SECTION 1I.

Solution of the equations in the case of an infinite cylinder oscillating in an unlimited mass of fluid, in a direction
perpendicular to its axis.

24. Suppose a long cylindrical rod suspended at a point in its axis, and made to oscillate as a pendulum in an
unlimited mass of fluid. The resistance experienced by any element of the cylinder comprised between two parallel
planes drawn perpendicular to the axis will manifestly be very nearly the same as if the element belonged to an
infinite cylinder oscillating with the same linear velocity. For an element situated very near either extremity of the
rod, the resistance thus determined would, no doubt, be sensibly erroneous ; but as the diameter of the rod is
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supposed to be but small in comparison with its length, it will be easily seen that the error thus introduced must be
extremely small.

Imagine then an infinite cylinder to oscillate in a fluid, in a direction perpendicular to its axis, so that the
motion takes place in two dimensions, and let it be required to determine the motion of the fluid. The mode of
solution of this problem will require no explanation, being identical in principle with that which has been already
adopted in the case of a sphere. In the present instance the problem will be found somewhat easier, up to the
formation of the equations analogous to (33) and (34), after which it will become much more difficult.

25. Let a Plane drawn perpendicular to the axis of the cylinder be taken for the plane of xy, the origin being
situated in the mean position of the axis of the cylinder, and the axis of x being measured in the direction of the
cylinder's motion. The general equations (2), (3) become in this case

dp (d’u d’u) du

&=\ )" (66)
b (& ) @)) I )
d—:'/_ =@ (d’ﬂg dyﬁ P dt J
du dv
d_w + @ = O ....................... (67)‘
By virtue of (67), udy - vdx is an exact differential. Let then
udy ~vde=dy.....ccooveveriiniii. . (68)

Eliminating p by differentiation from the two equations (66), and expressing u and v in terms of ¢ in the
resulting equation, we get

( a + EF_ R AYA
dz " dp ,7 6715) <d—$_2 + ‘W) x=0....... (69),
and, as before
X=Xt Xaovereeens coeneiininnn., (70),
where
a &

(dx2 +dy2> %=0 .. (71),

( & & 1d

i+ ,%) Xe=0ovoornr ., (72)

We get from (66) and (68)
_ d/d&® d* 14
d = = [ =— — -
Ip = ' pdx dy(dx"+dy2 ,u/dt)x
o d(d d&& 14
#ol) - g (T = )0

which becomes by means of (70), (71), and (72)

= o (Tt g, _ T,
p=r (dt dz %~ Tt dy dx)
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26. Passing to polar co-ordinates r, g, where q is supposed to be measured from the axis of x, we get from (68),
(72), (72), and (73)

Brd — Odr = dy

d 1d 1@
((W ;Z‘+;2TGZ)X1=0 .................. (75),

d 1d 1d& 14

<dr2+;%+77d‘02_;'(ﬂ)x"=0 ............ (76),
=, @[ dx,

dp—p(i—t(wlrdﬂ—;%dr) .................. ),

R, Q in (74) being the velocities along and perpendicular to the radius vector.

27. Let a be the radius of the cylinder; and as before let the cylinder's motion be defined by the equation

then we have for the equations of condition which relate to the surface of the cylinder

R=£lx=cos()d—f=ccos6e"'m’t,
rd0 dt hen re 79)
ax d g i when r=a...(79).
— 2 = m g 2= sl A
=—= s1n0dt csinfe

The general equations (75), (76), as well as the equations of condition (79), may be satisfied by taking

xl = eﬂ-'m’t Sin 0 Fl (1‘), x2 = ep,'m’t Sin 6 F; ("') ......... (80).

Substituting in (75), (76), and (79), we get

Fr o)+ B ()= L N L S— (81),
B )+ 1B ) =L B ) = () = 0. (82)
F(@+F.(@)=ac, F (a)+F/ (a)=cecceuerrnnn. (83),

besides which we have the condition that the velocity shall vanish at an infinite distance.

28. Theintegral of (81) is

The integral of (82) cannot be obtained in finite terms.

To simplify the latter equation, assume F, (r) = F3'(r). Substituting in (82), and integrating once, we get
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FY () + L L) = m B ()= 0 oo (85).

It is unnecessary to add an arbitrary constant, because such a constant, if introduced, might be got rid of by writing
F3(r) + C for F5 (r).

To integrate (85) by series according to ascending powers of r, let us first, instead of (85), take the equation
formed from it by multiplying the second term by 1 - d. Assuming in this new equation Fa(r) = A; x* + By x° + . . .
, and determining the arbitrary indices a, b... and the arbitrary constants Ay, B; ... S0 as to satisfy the equation, we
get

mir? mirt
E'(T)=A'{1+ 2@-0 T2 4e-0G-9 " }
m'r* m'r*
+A~’"{1+ s+t aETETy T

2

_ mr®  mirt
= (AI+A”+.A”810g7') {1 + _2? +W + ...}

2,2
mir
S,

4,4 6,8
o +mrS+ mr S+}

+%(A/—A“)8{ 1798 42T gr 2 ai s
+termsinvolvingd? d3. ..

In this expression
Si=17"4+27 37 L+ (86).

Putting now
4,=C-4, 4,=D&",

substituting in the above eguation, and then making d vanish, we get

F,(r)=(C+ Dlogr) (1 +% +§?~£, + )

mir mirt mer®
_D(_2_§_Sl+22.4282+22.4,.6, ss+...> ...... (87).

The series in this equation are evidently convergent for al values of r, however great; but, nevertheless, they give
us no information as to what becomes of when r becomes infinite, and yet one relation between C and D has to be

determined by the condition that F5(r) shall not become infinite with r.

The equation (85) may be integrated by means of descending series combined with exponentials, by assuming
F(ry=em (Ar -+ Bre..).

| have already given the integral in this form in a paper, On the numerical calculation of a class of definite
integrals and infinite series*. The result is
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1 —mr -é 12 12.32 1.2-32-52 }
F(r)=0e™r {1—2,4mr+2.4(4mr)"’—2.4.6(4mr)3 )

L3 .3 1°. 3. 5 } 88
e T S @y V24,6 Gy T (88).

+D'em'r-*{1+2_

These series, although ultimately divergent in all cases, are very convenient for numerical calculation when the
modulus of mr is large. Moreover they give at once D' = O for the condition that F3(r) shall not become infinite
with r, and therefore we shall be able to obtain the required relation between C and D, provided we can express D'
as afunction of C and D,

29. This may be effected by means of the integral of (85) expressed by different integrals. This form of the
integral is already known. It becomes, by a slight transformation,

F(r) = f (07 + D" log (r sin? @)} (enr o050 4 e=mreo5) .. (89),
0

C" D" being the two arbitrary constants. If we expand the exponentials in (89), and integrate the terms separately,
we obtain, in fact, an expression of the same form as (87). This transformation requires the reduction of the
definite integral

jul
2

P;= f cos? o log sin o dw.
0

If we integrate by parts, integrating cos w log sin w dw, and differentiating cos”™* w, we shall make P; depend on
Pi.1 Assuming Po= Qo, P1=1/2Q; .. ., and generally

we get )
Q= Q,— (27 +47 .+ (2»‘)"}% =g log (3) — % S;t.

* See Camb. Phil. Trans. Val. IX. p 182. [Ante, Val. I1. p 349]
+ A demonstration by Mr Ellis of the theorem

T T
f 2 log sin@ d0=§ log (3),
0
dueto Euler, will be found in the second volume of the Cambridge Mathematical Journal, p. 282, or in Gregory's Examples, p. 484.

The equivalence of the expressions (87) and (89) having been ascertained, in order to find the relations between
C D and C" D" it will be sufficient to write down the two leading terms in (87) and (89), and equate the results.
We thus get
C+Dlogr=nC"+mD"logr+2wD"log (}),

whence
C=nC"+2nrlog(}). D", D=aD"............ (90).
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There remains the more difficult step of finding the relation between D' and C", D". For this purpose let us seek
the ultimate value of the second member of equation (89) when r increases indefinitely. In the first place we may
observe that if W, W be two imaginary quantities having their real parts positive, if the real part of W be greater
than that of W' and if r be supposed to increase indefinitely, e " will ultimately be incomparably greater than,
e oreventhanlogr»" " or, to speak more precisely, the modulus of the former expression will ultimately be
incomparably greater than the modulus of either of the latter. Hence, in finding the ultimate value of the expression
for F3(r) in (89), we may replace the limits 0 and 1/2p of w by 0 and wy, where w; is a positive quantity as small as
we please, which we may suppose to vanish after r has become infinite. We may also, for the same reason, omit the
second of the exponentials. Let cosw =1-1 sothat

L, A an A |
sin w—27\(1—§), dw—m—(l'l'z_}_"'),‘/@k)’

then the limitsof | will beOand | ; wherel ; =1 - cosw;. Sincelog (1 -1/2) ultimately vanishes,and 1 +1/4 + ..
. becomes ultimately 1, we get from (89)

dn
V2N

Al
limit of F(r) =¢™ x limit of f (0" + D" log 2Ar) em™Ar
0

* The word limit is here used in the sense in which f (r) may be called the limit of f (r) when the ratio of f (r) to f (r) is ultimately a ratio of

equality, though f (r) and f (r) may vanish or become infinite together, in which case the limit of f (r), according to the usua sense of the word limit,
would be said to be zero or infinity.

If nowweputl =1~ r!, we shall have 0 and | ;r for the limits of | *, and the second of these becomes infinite with
r. Hence

limit of F(r) = (2r)} e™ f (C"+ D" log 2V) =™ N Ean ......(91).
0

Now

zf Cadde= wé,
0
and if we differentiate both sides of the equation
f ot dw =T (s)
0
with respect to s, and after differentiation put s = ¥, we get
f ez tlogzedr=T"(1}).
0
Putting x = ml ' in these equations we get
f €=M N~k ) = mhn b,
0
f e~™ N -tlog M dN =m~} [TV (3) — ntlog m},
0

where that value of m™? is to be taken which hasits real part positive. Substituting in (91) we get
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3
limit of Fi(r) = (ﬁ;) e { 0"+ ('n"* '} - log ZZ—) D”}.
Comparing with (88) we get

p=(g )* {o" + (nri T -log ) D”} ......... (92).

30. We are now enabled to find the relation between C and D arising from the condition that the motion of the
fluid shall not become infinitely great at an infinite distance from the cylinder. The determination of the arbitrary
constants A, B, C, D will present no further difficulty. We must have B = 0, since otherwise the velocity would be
finite at an infinite distance, and then the two equations (83), combined with the relation above mentioned, will
serve to determine A, C, D. The motion of the fluid will thus be completely determined, the functions Fy(r), F5(r)
being given by (84) and (87). When the modulus of mr is large, the series in (87), though ultimately
hypergeometrically convergent, are at first rapidly divergent, and in calculating the numerical value of F3(r) in
such a case it would be far more convenient to employ equation (88). The employment of this equation for the
purpose would require the previous determination of the constant C'. It will be found however that in calculating
the resultant pressure of the fluid on the cylinder, which it is the main object of the present investigation to
determine, a knowledge of the value of C' will not be required, and that, even though the equation (88) be
employed*.

Putting D' = 0in (92), and eliminating C" and D" between the resulting equation and the two equations (90),
we get

—+F/(a)=ac, —=+aF, (a)=ac............... (94),
whence
ac+ A aF/(a)
Pom A= Toay s (95).

This equation will determine A, because if F3(a) be expressed by (87) the second member of (95) will only contain
theratio of C to D, which is given by (93), and if F3(a) be expressed by (88) C' will disappear, inasmuch as D' = 0.

31. Let us now form the expression for the resultant of the forces which the fluid exerts on the cylinder. Let F

be the resultant of the pressures acting on a length dl of the cylinder, which will evidently be a force acting in the
direction of the axis of x; then we get in the same way as the expression (47) was obtained

big
F=adl f (= P.cos@+ Tysin@),dl ............... (96),
0

and Py, Tq, are given in terms of R and Q by the same formulae (46) as before. When the right-hand members of
these equations are expressed in terms of ¢, there will be only one term in which

* [C' as subsequently determined will be given at the end of the paper.]
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the differentiation with respect to r rises to the second order, and we get from (70), (75), and (76)

dr? rdr Pde T @ dt
We get from this equation and the equations of condition (79)
dR dx> ( d’x) -
(dr) (de drd@ ’

drR\ 1 d“x> _sinfdf_©
(m)a“a'*(oﬁ' “ T4 dtT e

(38), =G, -5 8. ).~ ). 2 )

)
Hence

We get by integration by parts
fpacos 00 = pysin 6~ | (g%) sin 0 d6.

The first term vanishes at both limits; and putting for dp/dq its value given by (77), and substituting in (97), we
get

d [ dX1 } . 046
F= padl Zl—tfo { a (7’;),; + (Xg)a sin 0 3
or

d [ dy, } . 046
F=patl [ {a/(7;>a+(X2)a sin 6 do,

Observing that F3'(a) or F»(a) = ac - Fy(a) from (83), and that Fy(a) = Aa*, where A is given by (95), and
putting M' for p r a2 dl, the mass of the fluid displaced, we get

2 s” (a’) — F, 8’ (a')} eﬁntr

P Mo =12 T TR

which becomes by means of the differential equation (85) which F; satisfies

F=—Moend -1 {1 —”%FF—(%} eVoInt (98).
Let
AF) (@) _
1- il (@) =K T (99),

where k and k' are real, then, as before, kM' d*x / dt? will be the part of F which alters the time of oscillation, and
kM'n dx /dt the part which produces a diminution in the arc of oscillation.
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When mi vanishes, m becomes infinite, and we get from (88) and (99), rememberingthat D'=0; k =1, k' =0, a
result which follows directly and very simply from the ordinary equations of hydrodynamics*.

32. Every thing is now reduced to the numerical calculation of the quantities k, k' of which the analytical
expressions are given. The series (87) being always convergent might be employed in all cases, but when the

modulus of ma is large, it will be far more convenient to employ a series according to descending powers of a. Let
us consider the ascending seriesfirst.

Let 2m be the modulus of ma; then
’.'«/‘.1, a n _a \/ ar
ma = 2Mm & m= 5 \/—, = 3 T e (100),

t being as before the time of oscillation from rest to rest. Substituting in (99) the above expression for ma, we get

— V' =1aF, ()
—J=1F = Y s T 101).
E—J =1k =1+ TR0 (101)
Putting for shortness
log 4 +7 ") ==A . (102),

we get from (87) and (93)
1 J—
I—)ﬁ;(a)=(1ogm+A+%J—1)

m o — m* m° —
(14_?'\/—1_12.22 12,92, 32\/_1+)
m’ — m
‘(?Sﬂ/‘l'ﬂzs e LT D
4

—
l—)an (a)—1+ 1- 11 21

T —\ /m’ m*
+2(logm+A+I~/—1> (T“/_l_l'"'.‘z_"')

T )

* See Camb. Phil. Trans. Vol. VIII. p. 116. [Ante, Vol. |. p. 37.]

Let
w’ me _ momt _
T most =M Fo gt M,
m’ me ,  m m* M
m M =M, oy o gt =M
, 1% 12 2" 3 0 ‘11:‘.22 1%, 2“’ 3.4 (103),
m _ =
TS‘ o 22 S +...=N, F-ng i 2, o) &S4+... N,
w m® , m N
S gt =Ny S g S
loge M4+ A =L (104):
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then substituting in (101), changing the sign of -1 and arranging the terms, we get

M T Nt (T L~ 0= M)~ N
- 1 + oy

" ~G ML (1= M)+ N, +(- LM, =5 (1= M)+ N}/ =1

33. Before going on with the calculation, it will be requisite to know the numerical value of the transcendental
quantity L. Now

AT ()= T () = Slog T ()
=% log T' (1 +s)—18. for s=1,

and the value of d/ds xlog (1 + s) may be got at once from Legendre's table of the common logarithms of G (1 +
s), inwhich the interval of s is.001. Putting I, for the tabular number corresponding to s, we have

‘%log T (1 +5) = 1000 log, 10 {AL - § A%, + } A% — } A%, + ...

Fors=1%
Al =+16050324, AY,=+405620, A',=-359, A, =+6%

* These numbers are copied from De Morgan's Differential and Integral Calculus, p. 588.

the last figure being in each case in the 12th place of decimals. We thus get
w1V (§) =—19635102, A =+4-5772158*............ (106).

34. When m islarge, it will be more convenient to employ series according to descending powers of a.
Observing that the general term of F3 (a) as given by (88), inwhichD' =0, is

e e [1.3..2i— DT
(-1 Ce 2. 4...% (dma) at’

we get for the general term of ' (a)

o [1.3...(2-3)) 2-1? 2-1
(=17 Ce 2.4...(2i—2)(4ma)"'a*{m2i.4ma_— 2a }

and the expression within brackets is equivalent to

_@-1)(%i+1)

8ia ?

whence

aF)(a) = C'e™ mat { ~1

_ 1.3, 1.3.5 _ }
2.4ma ' 2.4 (4ma)} )’
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and we find by actua division

35. When many terms are required, the calculation of the coefficients may be facilitated in the following
manner.

Assuming
aF, (@) =v(a) F,(a), -

we have
F, (a)=a" v (a) F, (a),
F/(a)={a" v (a) —a v (a) +a” (va)} F,(a).

Substituting in the differential equation (85) which F; has to satisfy, we get
av' (@) + {v(@) —mia’=0.ceunnenniines (107).

Assuming
v(@g)==—ma+A4,+ A4, (ma)" + 4, (ma)” +...... (108),

* [Aisin fact the well-known transcendent called Euler's Constant, the value of which is-5772156649 &c. This, which | ought to have known,
was pointed out to me just after the publication of the paper by my friend Prof. F. Newman.]

and substituting in the above equation, we get

—ma — 14, (ma)™ — 24, (ma)™ — 34, (ma)™ ...
+{—2ma+ A+ 4, (ma)*+..} {4, + 4, (ma)” +...} =0,

which gives on equating coefficients, Ag = - 1/2, and for i > 0

24, =—id, + A A+ A4, ...+ A4,

W=

or, assuming to avoid fractions,

aformula by means of which the coefficients By, B,, Bz . .. may be readily calculated one after another. We get

B,=-1, B=+1, B,=-4 B=+25
B,=-208, B,=+2146,  B,=-—26368 r (111).
B,=+375733,  B,=—6092032.

We get now from (100), (101), (108), and (109)

kE-V=1k
Y b PN 1 AV B
—142e Y T o3BT e BT L (1),

1
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whence if we calculate

u=2m", wu=-}Bm?, u= T B
U, = (_ 1)“‘1 %Bt—i g m™ ’

we shall have, changing the sign of O-1 in (112), and writing 8 for

k+J/—1k=1+u8+u8—u8+us'—u8+...
k =1+A\/%u1+«/§u3—-u4+d%us—v%uﬁus—\/?gue... (113)
=/ bu, +1u,— VgV B — v R — V.

If I, 1, . . . bethe common logarithms of the coefficients of m™ m™ ..in the last two of the formulae (113),

l,= 1505150, l,= . 2:4948500 ; l.=2'3646348;
l,=
l,=

=T16989700; [ = 2 871251; 1, =27019316;
~0:6453650; 1, =24046734; [, =26017045;

and if the logarithms of the coefficients of m?* m? .inug, Uy . . . be required, it will be sufficient to add
.1505150 to the 1st, 3rd, 5th, & c. of the logarithms above given.

36. It will be found that when m is at all large, the series (113) are at first convergent, and afterwards
divergent, and in passing from convergent to divergent the quantities u; become nearly equal for several successive

terms. If after having calculated i terms of the first of the series (113) we wish to complete the series by a formula
involving the differences of u; we have

B~ 8" 8 — L =8 {1 -8 (14+A)+8 (1+A)—.. ]y
=8‘{1+8(1+A)}"

_ 88 Ay 8)’&— y
T1+8 1+8 (1+8

and
FV1
14+8=1+4cos~ +J lsmf—-2cos§e8\/ ,
8(1+8)'1=1}Secq—g.e§\/—l

so that the quantities to be added to k, k', are

T 2i—1 T %
—1)*1 sec & Tou— T cos =
tok, (—1)"1sec 3 {cos 3 U, — % sec g cos ¢ 7. Ay,

. .
+ (% sec78—r> cosm%1 . Ay, }
(114).
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. . - . N
to &, (—1)'ésecg{sm228 w.u‘.—%sec;—rsmgw.Aui
a\' . 2+1 .
+(§secg> sin —¢ W.Au‘...},

37. The following table contains the values of the functions k and k' calculated for 40 different values of m.
Fromm =1tom = 1.5 the calculation was performed by means of the formula (105) ; the rest of the table was
calculated by means of the series (113). In the former part of the calculation, six places of decimals were employed
in calculating the functions My, &c. given by (103). The last figure was then struck out, and five-figure logarithms
were employed in multiplying the four functions Mg, M’y Meand 1 — M’ by p/4, and by L, as well asin reducing
the right-hand member of (105) to the form k + O-1 k’. The terms of the series (113) were calculated to five places
of decimals. That these series are sufficiently convergent to be employed when m = 1.5, might be presumed from
the numerical values of the terms, and is confirmed by finding that they give k = 1.952, and k'= 1.153. For m =
1.5 and afew of the succeeding values, the second and third of the series (113) were summed directly as far asm™
inclusively, and the remainders were calculated from the formulae (114). Two columns are annexed, which give
the values of m % -and m %' and exhibit the law of the variation of the two parts of the force F, when the radius of
the cylinder varies, the nature of the fluid and time of oscillation remaining unchanged. Four significant figures are
retained in all the results.

m k k' m%k [m%*'| m k K | m% |[m%
o ¥ ¥ 0 o 21 |1.677|.7822| 7.395 | 3.450
-119.70 [48.63 [.1970 |4863|2.2 |1.646|.7421| 7.966 | 3.592
29.166 [16.73 |.3666 |[.6691 [2.3 |1.618|.7059| 8.557 | 3.734
36.166 | 9.258 [5549 [.8832 2.4 |1.592|.6730| 9.168 | 3.877
44771 | 6.185 [.7633 [.9896 |25 |1.568|.6430| 9.799 | 4.019
5
6
-7
8

513.968 | 4.567 [.9920 |1.142 (2.6 1.546|.6154( 10.45 | 4.160
.613.445 | 3.589 | 1.240 |1.292 (2.7 1.526|.5902( 11.12 | 4.303
3.082 | 2936 | 1.510 |1.439 (2.8 1.507|.5669( 11.81 | 4.444
2812 | 2477 | 1.800 |1.585 (2.9 1.489|.5453( 12.52 | 4.586
92.604 | 2137 | 2110 |1.731 (3.0 [1.473|.5253| 13.25 | 4.728
1.02.439 | 1.876 | 2.439 |1.876 |3.1 1.457|.5068 | 14.01 | 4.870
1.12.306 | 1.678 | 2.790 |2.021 |3.2 1.443|.4895( 14.78 | 5.012
1.22.194 | 1.503 | 3.160 |2.164 |3.3 1.430|.4732( 15.57 | 5.154
1.32.102 | 1.365 | 3.552 |2.307 |3.4 |1.417|.4581| 16.38 | 5.296
142021 | 1.250 | 3.961 |2.450 |3.5 1.405|.4439( 17.21 | 5.437
1.5(1.951 | 1.163 | 4.389 |2.595 |3.6 1.394|.4305( 18.06 | 5.580
1.6(1.891 | 1.069 | 4.841 |2.739 |3.7 1.383|.4179( 18.93 | 5.721
1.7/1.838 9965 | 5.312 |12.880 (3.8 1.373|.4060( 19.82 | 5.863
1.8(1.791 |.9332 5.804 (3.024 3.9 1.363|.3948( 20.73 | 6.005
1.91.749 |.8767 6.314 [3.165 4.0 |1.354|.3841| 21.67 | 6.145
2.01.711 |.8268 6.845 |3.307 | ¥ 1 0 ¥ ¥

The numerical calculation by means of the formulae (103), (104), (105) becomes very laborious when many
values of the functions are required. The difficulty of the calculation increases with the value of m for two reasons,
first, the calculation of the functions My, &c. becomes longer, and secondly, the moduli of the numerator and
denominator of the fraction in the right-hand member of (105) go on decreasing, so that greater and greater
accuracy is required in the calculation of the functions Mg, &c., and of the products LMy, &c., in order to ensure a
given degree of accuracy in the result. The calculation by the descending series (113) is on the contrary very easy.

It will be found that the first differences of m%’ and m?(k — 1)' are nearly constant, except near the very

beginning of the table. Hence in the earlier part of the table the value of k or k' for a value of m not found in the
table will be best got by finding m % - m Z and m %' by interpolation, and thence passing to the value of k or k’.
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Very near the beginning of the table, interpolation would not succeed, but in such a case recourse may be had to
the formulae (103), (104), (105), the calculation of which is comparatively easy when m issmall. It did not seem
worth while to extend the table beyond m = 4, because where m  is greater than 4, the series (113) are so rapidly
convergent that k and k' may be calculated to a sufficient degree of accuracy with extreme facility.

38. Let us now examine the progress of the functionsk and k’.

When m is very small, we may neglect the powers of m in the numerator and denominator of the fraction in
the right-hand member of equation (105), retaining only the logarithms and the constant terms. We thus get

k+«/71'k’=1—l—l%/:—;—_l,
whence
m (k—1)= __dm m’k’=;L—— ...(115)
TP+ (gmyY "+ (dm) ’

L being given by (102) and (104), or (104) and (106). When m vanishes, L, which involves the logarithm of m ™
becomes infinite, but ultimately increases more slowly than if it varied as m affected with any negative index
however small. Hence it appears from (115), that k - 1 and k' are expressed by m™ multiplied by two functions of
m which, though they ultimately vanish with m, decrease very slowly, so that a considerable change in m makes
but a small change in these functions. Now when the radius a of the cylinder varies, everything else remaining the
same, m varies as a, and in general the parts of the force F on which depend the alteration in the time of vibration,
and the diminution in the arc of oscillation, vary as a’k a’k' respectively. Hence in the case of a cylinder of small
radius, such as the wire used to support a sphere in a pendulum experiment, a considerable change in the radius of
the cylinder produces a comparatively small change in the part of the ateration in the time and are of vibration
which is due to the resistance experienced by the wire. The simple formulae (115) are accurate enough for the fine
wires usually employed in such experiments if the theory itself be applicable ; but reasons will presently be given
for regarding the application of the theory to such fine wires as extremely questionable.

From m = .3 or .4 to the end of the table, the first differences of each of the functionsin m?(k - 1) and m’)
will remain nearly constant. Hence for a considerable range of values of m, each of the functions may be expressed
pretty accurately by A + Bm. When m is at all large, the first two terms in the 2nd and 3rd of the formulae (113)
will give k and k' with considerable accuracy, because, independently of the decrease of the successive quantities
m™* m?m? ..., the coefficients m™ and m™ are considerably larger than those of several of the succeeding
powers. If we neglect in these formulae the terms after a2, we get

k=14v2.m% K=y2.m+im™

It may be remarked that these approximate expressions, regarded as functions of the radius a, have precisely the
same form as the exact expressions obtained for a sphere, the coefficients only being different.

SECTION IV.

Determination of the motion of a fluid about a sphere which moves uniformly with a small velocity. Justification of
the application of the solutions obtained in Sections II. and I1l. to cases in which the extent of* oscillation is not
small in comparison with the radius of the sphere or cylinder. Discussion of a difficulty which presents itself with
reference to the uniform motion of a cylinder in a fluid
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39. Let a sphere move in afluid with a uniform velocity V, its centre moving in aright line ; and let the rest of
the notation be the same as in Section I1. Conceive a velocity equal and opposite to that of the sphere impressed
both on the sphere and on the fluid, which will not affect the relative motion of the sphere and fluid, and will
reduce the determination of the motion of the fluid to a problem of steady motion. Then we have for the equations
of condition

R=0, ® =0, whenr=q............... (116);
R=—"Vecosh, ®="Vsinh, whenr=c ...... 117).

The equations of condition, as well as the equations of motion, may be satisfied by supposing y to have the
form sin® q f (r). We get from (20"), by the same process as that by which (33), (34) were obtained,

(d% ) 2 LT J—— (118),

the only difference being that in the present case the equation (20) cannot be replaced by the two (22), (23), which
become identical, inasmuch as the velocity of the fluid is independent of the time.

Theintegral of (118) is

Jf@)=Ar+Br+ O+ Dr* .l (119),
which gives
R='r2si1n 7 %:2 cos @ (Ar*+ Br + C + Dr*),

O=- 1 W Gn6(4r ~ B = 20 - 4Dr).

rsin @ dr

The first of the equations of condition (117) requires that

It is particularly to be remarked that inasmuch as the two arbitrary constants C, D are determined by the first of the
conditions (117), none remain whereby to satisfy the second. Nevertheless it happens that the second of these
conditions leads to precisely the same equations (120) as the first. The equations of condition (116) give

A=—1Va*, B=1"Va;

whence
v=1 V’(—— L) +%1'—‘1) Sin % ... (121),
3
R——V(l—%%+%_—s)cosl9 .................. (122),
8
0= V(l il 2SO (123)

If now we wish to obtain the solution of the problem in its origina shape, in which the sphere isin motion and
the fluid at rest, except so far asit is disturbed by the sphere, we have merely to add V cosq, - V sin g, 1/2 Vr® sin?
g to the expressionsfor R Q, y . We get from (121)
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3r a\ .
= 2 —— —— 2
v=1%Va (a r) sin®f ........oe.eee, (124)
40. Let us now return to the problem of Section Il.; let us suppose the time of oscillation to increase

indefinitely, and examine what equation (40) becomes in the limit.

When t becomes infinite, n, and therefore m, vanishes; the expression within brackets in (40) takes the form ¥
- ¥ and its limiting value is easily found by the ordinary methods. We must retain the m? in the coefficient of t,
becauset is susceptible of unlimited increase. We get in the limit

¥ =} a® cev ™t (.‘%'r - -;-l_) sin @............ (125).

* | have already had occasion, in treating of another subject, to publish the solution expressed by this equation, which | had obtained as alimiting
case of the problem of aball pendulum. See Philosophical Magazine for May, 1848, p. 343. [Ante, Vol. I1. p. 10.]

If now we put V for dx /dt, the velocity of the sphere, we get from (39), ce™™ = V. After substituting in (125),
the equation will remain unchanged when we pass from the symbolical to the real values of y and V, and thus
(125) will be reduced to (124).

41. 1t appears then that by supposing the rate of alteration of the velocity of the sphere to decrease indefinitely,
we obtain from the solution of the problem of Section Il the same result as was obtained in Art. 39, by treating the
motion as steady. As yet, however, the method of Art. 40 is subject to a limitation from which that of Art. 39 is
free. In obtaining equation (40), it was supposed that the maximum excursion of the sphere was small in
comparison with its radius. Retaining this restriction while we suppose t to become very large, we are obliged to
suppose ¢ to become very small, so that the velocity of the sphere is not merely so small that we may neglect terms
depending upon its sgquare, a restriction to which Art. 39 is also subject, but so extremely small that the space
passed over by the spherein even along time is small in comparison with its radius.

We have. seen, however, that on supposing t very large in (40) we obtain a result identical with (124), not
merely aresult with which (124) becomes identical when the restriction above mentioned is introduced. This leads
to the supposition that the solution expressed by (40) is in fact more general than would appear from the way in
which it was obtained. That such is really the case may be shewn by a dight modification of the analysis. Instead of
referring the fluid to axes fixed in space, refer it to axes originating at the centre of the sphere, and moveable with
it. In the general equations of motion, the terms which contain differential coefficients taken with respect to the
coordinates will remain unchanged, inasmuch as they represent the very same limiting ratios as before: it is only
those in which differentiation with respect to t occurs that will be atered. If d'/dt be the symbol of differentiation
with respect to t when the fluid is referred to the moveable axes, we shall have

but the terms arising from dx /dt . d/dx are of the order of the square of the velocity, and are therefore to be
neglected. Hence the general equations have the same form whether the fluid be referred to the fixed or moveable
axes. But on the latter supposition the equations of condition (30) become rigorously exact. Hence equation (40)
gives correctly the solution of the problem, independently of the restriction that the maximum excursion of the
sphere be small compared with its radius, provided we suppose the polar co-ordinates r, g measured from the
centre of the sphere in its actual, not its mean position. Similar remarks apply to the problem of the cylinder.
Moreover, in the case of a sphere oscillating within a concentric spherical envelope, it is not necessary, in order to
employ the solution obtained in Section 11., that the maximum excursion of the sphere be small compared with its
radius; it is sufficient that it be small compared with the radius of the envelope.
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These are points of great importance, because the excursions of an oscillating sphere in a pendulum experiment
are not by any means extremely small compared with the radius of the sphere ; and in the case of a narrow
cylinder, such as the suspending wire, so far from the maximum excursion being small compared with the radius of
the cylinder, it is, on the contrary, the radius which is small compared with the maximum excursion.

42. Let us now return to the case of the uniform motion of a sphere. In order to obtain directly the expression
for the resistance of the fluid, it would be requisite first to find p, then to get P, and T, from (46), or at least to get
the values of these functions for r = a, and lastly to substitute in (47) and perform the integration. We should
obtain p by integrating the expression for dp got from (16) and (17). It would be requisite first to expressu and q in
terms of y then to transform the expression for dp so as to involve polar co-ordinates, and then substitute for y its
value given by (121) ; or else to express the right-hand member of (121) by the co-ordinates x, v, and substitute in
the expression for dp*. We have seen, however, that the results applicable to uniform motion may be deduced as
limiting cases of those which relate to oscillatory motion, and consequently, we may make use of the expression for
F aready worked out. Writing V for ce®’™ in the first equation of Art. 20, expressing m in terms of n, and then
making n vanish, we get

—~F=06mupaV...oc...oo..co... (126),

and -F is the resistance required.

* The equations (16), (17) give, after atroublesome transformation to polar coordinates,

dp_ u 4 (@ singd 1 d _pd
dr = r2sind aG\aP T 7 o enodd pdi) ¥
ap ,u.d(d” sinodldpd)lp

@t TR a6 wneds " adt

The expression for dp got from these equations is an exact differential by virtue of the equation which determines Y ; and in the problems
considered in Section |1, and in the present Section y has the form Y, sin? g, where Y is independent of q. Hence we get from (b), by integrating
partially with respect to q,

_ afda 2 pd
P=pcosd o (—- ————— ) Vo {c).

It is unnecessary to add an arbitrary function of r, because if | (r) be such afunction which we suppose added to the right-hand member of (c), we must
determine| by substituting in (a). The resulting expression for | ' (r) cannot contain g, inasmuch as the expression for dp is an exact differential, but it
is composed of terms which all involve cos q as a factor, and therefore we know, without working out, that these terms must destroy one another.
Hence | (r) must be constant, or at most be a function of t, which we may suppose included in P. I (r) will in fact be equal to zero if P be the
equilibrium pressure at the depth at which @dz' vanishes.

This equation may be employed to determine the termina velocity of a sphere ascending or descending in a
fluid, provided the motion be so sow that the square of the velocity may be neglected. It has been shewn
experimentally by Coulomb*, that in the case of very slow motions, the resistance of a fluid depends partly on the
square and partly on the first power of the velocity. The formula (126) determines, in the particular case of a
sphere, that part of the whole resistance which depends on the first power of the velocity, even though the part
which depends on the square of the velocity be not wholly insensible.

* Mémoires de I'Institut, Tom. I11. p. 246.

It is particularly to be remarked, that according to the formula (126), the resistance varies not as the surface but
as the radius of the sphere, and consequently the quotient of the resistance divided by the mass increases in a
higher ratio, as the radius diminishes, than if the resistance varied as the surface. Accordingly, fine powders
remain nearly suspended in afluid of widely different specific gravity.
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43. When the motion is so slow that the part of the resistance which depends on the square of the velocity may
be neglected, we have, supposing V to be the terminal velocity, -F = 4/3 pg(s - r) a3, where g is the force of
gravity, and s which is supposed greater than r, the density of the sphere. Substituting in (126) we get

V= 925, (% - 1) B aeeeeeeenrenenes agm.

Let us apply this equation to determine the terminal velocity of a globule of water forming part of a cloud.
Putting g = 386, m = (.116)?, an inch being the unit of length, and supposing sr™* - 1 = 1000, in order to alow a
little for the rarity of the air at the height of the cloud, we get V = 6372 ~ 1000a”. Thus, for a globule the one
thousandth of an inch in diameter, we have V = 1.593 inch per second. For a globule the one ten thousandth of an
inch in diameter, the terminal velocity would be a hundred times smaller, so as not to amount to the one sixtieth
part of an inch per second.

We may form a very good judgment of the magnitude of that part of the resistance which varies as the square of
the velocity, and which is the only kind of resistance that could exist if the pressure were equal in all directions, by
calculating the numerical value of the resistance according to the common theory, imperfect though it be. It follows
from this theory that if h be the height due to the velocity V, the resistance is to the weight as 3r hto 8s a. For V =
1.593 inch per second, the resistance is not quite the one four hundredth part of the weight; and for a sphere only
the one ten thousandth of an inch in diameter, moving with the velocity calculated from the formula (127), the
ratio of the resistance to the weight would be ten times as small. The terminal velocities of the globules calculated
from the common theory would be 32.07 and 10.14 inches per second, instead of only 1.593 and .01593 inch. It
appears then that the apparent suspension of the clouds is mainly due to the internal friction of air.

44. The resistance to the globule has here been determined as if the globule were a solid sphere. In strictness,
account ought to be taken of the relative motion of the fluid particles forming the globule itself. Although it may
readily be imagined that no material change would thus be made in the numerical result, it may be worth while to
point out the mode of solution of the problem. Suppose the globule preserved in a strictly spherical shape by-
capillary attraction, which will very nearly indeed be the case. Conceive a velocity equal and opposite to that of the
globule impressed both on the globule and on the surrounding fluid, which will reduce the problem to one of steady
motion. Let y; &c. refer to the fluid forming the globule, and assumey ; = f; (r) sin® . Then we get on changing
the constants in (119)

firy=Ar"+Br+ Cr*+ D"

The arbitrary constants, A;, B; vanish by the condition that the velocity shall not become infinite at the centre.
There remain the two arbitrary constants C;, D; to be determined, in addition to those which appeared in the
former problem. But we have now four instead of two equations of condition which have to be satisfied at the
surface of the sphere, which are that

B=0, R =0, =0, T,=T, whenr=a ..... (128).
We shall thus have the same number of arbitrary constants as conditions to be satisfied. Now T4 will involve m as
a coefficient, just as Tq involves nir or m; and m, which refers to water, is much larger than m which refersto air,
although mis larger than m'. Hence the results will be nearly the same as if we had taken m = ¥, or regarded the
sphere as solid.

If, however, instead of a globule of liquid descending in a gas we have a very small bubble ascending in a
liquid, we must not treat the bubble as a solid sphere. We may in this case also neglect the motion of the fluid
forming the sphere, but we have now arrived at the other extreme case of the general problem, and the two
equations of condition which have to be satisfied at the surface of the spherearethat R = 0and T, = 0 whenr = a,
instead of R=0and Q = 0,whenr =a.
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The equation of condition T, = 0 which applies to a bubble, as well as the fourth of equations (128), will not be
the true equations, if forces arising from internal friction exist in the superficia film of a fluid which are of a
different order of magnitude from those which exist throughout the mass. At the end of the memoir already
referred to, Coulomb states that in very slow motions the resistance of bodies not completely immersed in a liquid
is much greater than that of bodies wholly immersed, and promises to communicate a second memoir in
continuation of the first. This memoir, so far as | can find out, has never appeared. Should the existence of such
forces in the superficial film of aliquid be made out, the results deduced from the theory of internal friction will be
modified in a manner analogous to that in which the results deduced from the common principles of hydrostatics
are modified by capillary attraction. It may be remarked that we have nothing to do with forces of this kind in
considering the motion of pendulumsin air, or even in considering the oscillations of a sphere in water, except as
regards the very minute fraction of the whole effect which relates to the resistance experienced by the suspending
wire in the immediate neighbourhood of the free surface.

It may readily be seen that the effect of a set of forces in the superficial film of a liquid offering a peculiar
resistance to the relative motion of the particles would be, to make the resistance of a gas to a descending globule
agree still more closely with the result obtained by regarding the globule as solid, while the resistance experienced
by an ascending bubble would be materially increased, and made to approach to that which would belong to a solid
sphere of the same size without mass, or more strictly, with a mass only equal to that of the gas forming the bubble.
Possibly the determination of the velocity of ascent of very small bubbles may turn out to be a good mode of
measuring the amount of friction in the superficial film of aliquid, if it be true that forces of this kind have any
existence. But any investigation relating to such a subject would at present be premature.

45. Let us now attempt to determine the uniform motion of a fluid about an infinite cylinder. Employing the
notation of Section Il1., and reducing the problem to one of steady motion as in Art. 39, we obtain the same
equations of condition (116), (117), as in the case of the sphere. Assuming ¢ = sin g F(r), and substituting in the
equation obtained from (69) by transforming to polar coordinates and leaving out the terms which involve d/dt, we
get

&£ 14 1>2F(r)=0 ............ (129).

& T rdr
The integral of this equation may readily be obtained by multiplying the last term of the operating factor by (1
+ d)? integrating the transformed equation, and then making d vanish. It is
Fry=Ar"+ Br+ Crlogr+ Dr* ......... (130)

which gives

d -
R=7%9=(Ar + B+ Clog r+ Dr®) cos 6

d
O=— (%:(Ar‘*—B—C—Clogr—3Dr“) sin 6.

The first of the equations of condition (117) requires that

1--

0=0, .D=0, B=—If’

which also satisfies the second. We have thus only one arbitrary constant left whereby to satisfy the two equations
of condition (116), and the same value of A will not satisfy these two equations.

46. It appears then that the supposition of steady motion isinadmissible. It will be remembered that, in the case

of it so sphere, the solution of the problem was only possible because it so happened that the values of two arbitrary
constants determined by satisfying the first of the equations of condition (117) satisfied also the second, which
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indicates that the solution was to a certain extent tentative. We have evidently a right to conceive a sphere or
infinite cylinder to exist at rest in an infinite mass of fluid also at rest, to suppose the sphere or cylinder to be then
moved with a uniform velocity V, and to propose for determination the motion of the fluid at the end of the time t.
But we have no right to assume that the motion approaches a permanent state as t increases indefinitely. We may
follow either of two courses. We may proceed to solve the general problem in which the sphere or cylinder is
supposed to move from rest, and then examine what results we obtain by supposing t to increase indefinitely, or
else we may assume for trial that the motion is steady, and proceed to inquire whether we can satisfy al the
conditions of the problem on this supposition. The former course would have the disadvantage of requiring a
complicated analysis for the sake of obtaining a comparatively simple result, and it is even possible that the
solution of the problem might baffle us altogether; but if we adopt the latter course, we must not forget that the
equations with which we work are only provisional.

It might be objected that the impossibility of satisfying the conditions of the problem on the hypothesis of steady
motion arose from our assumption that sin q was a factor of ¢ the other factor being independent of g. This
however is not the case. For.. for given values of r and t, ¢ is afinite function of g fromgq=0toq=p. Wehavea
right to suppose ¢ to vanish at any point of the axis of x positive that we please; and if we suppose ¢ to vanish at
one such point, it may be shewn asin the note to Art. 15, that ¢ will vanish at all points of the axis of x positive or
X negative. Hence ¢ may be expanded in a convergent series of sines of q and its multiples ; and since ¢ and its
derivatives with respect to q alter continuously with g, the expansions of the derivatives will be got by direct
differentiation*. This being true for al other pairs of values of r and t, ¢ can in general be expanded in a
convergent series of sines of q and its multiples; but the coefficients, instead of being constant, will be functions of
r and t, or in the particular case of steady motion, functions of r alone. Now a very slight examination of the
general equations will suffice to shew that the coefficients of the sines of the different multiples of g remain
perfectly independent throughout the whole process, and consequently had we employed the general expansion, we
should have been led to the very same conclusions which have been deduced from the assumed form of c.

47. If we take the impossibility of the existence of a limiting state of motion, which has just been established, in
connexion with the results obtained in Section I11., we shall be able to understand the general nature of the motion
of the fluid around an infinite cylinder which is at first at rest, and is then moved on indefinitely with a uniform
velocity.

The fluid being treated as incompressible, the first motion which takes place is impulsive. Since the terms
depending on the internal friction will not appear in the calculation of this motion, we may employ the ordinary
equations of hydrodynamics. The result, which is easily obtained, is

Rdr + ©rdf = d¢, where ¢ =— I—? cos 8+ ...... (131).

* See apaper “On the Critical Values of the Sums of Periodic Series," Camb. Phil. Trans. Vol. VIII. p. 533. [Ante, Vol. I. p. 236.]

+ According to these equations, the fluid flows past the surface of the cylinder with a finite velocity. At the end of the small time t' after the
impact, the friction has reduced the velocity of the fluid in contact with the cylinder to that of the cylinder itself, and the tangential velocity aters very
rapidly in passing from the surface outwards. At asmall distance s from the surface of the cylinder, the relative velocity of the fluid and the cylinder, in
adirection tangential to the surface, is afunction of the independent variablest', s, which vanishes with s for any given value of t', however small, but
which for any given vaue of s, however small, approaches indefinitely to the quantity determined by (131) ast vanishes. The communication of lateral
motion is similar to the communication of temperature when the surface of a body has its temperature instantaneously raised or lowered by a finite
quantity.

As the cylinder moves on, it carries more and more of the fluid with it, in consequence of friction. For the sake of
precision, let the quantity carried by the element dl of the cylinder be defined to be that which, moving with the
velocity V, would have the same momentum in the direction of the motion that is actually possessed by the
elementary portion of fluid which is contained between two paralel infinite planes drawn perpendicular to the axis
of the cylinder, at an interval dl, the particles composing which are moving with velocities that vary from V to zero
in passing from the surface outwards. The pressure of the cylinder on the fluid continually tends to increase the
quantity of fluid which it carries with it, while the friction of the fluid at a distance from the cylinder continually
tends to diminish it. In the case of a sphere, these two causes eventually counteract each other, and the motion
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becomes uniform. But in the case of a cylinder, the increase in the quantity of fluid carried continually gains on the
decrease due to the friction of the surrounding fluid, and the quantity carried increases indefinitely as the cylinder
moves on. The rate at which the quantity carried is increased decreases continually, because the motion of the fluid
in the neighbourhood of the cylinder becomes more and more nearly a simple motion of translation equal to that of
the cylinder itself, and therefore the rate at which the quantity of fluid carried is increased would become smaller
and smaller, even were no resistance offered by the surrounding fluid.

The correctness of this explanation is confirmed by the following considerations. Suppose that F(r) bad been
given by the equation
F(r)=Ar"+ Br+ Cr's 4 Dy®
instead of (130), d being a small positive quantity. On this supposition it would have been possible to satisfy all the

equations of condition, and therefore steady motion would have been possible. By determining the arbitrary
constants, and substituting in ¢, we should have obtained

8 a 1 2 (r

1-8)
‘P=“V{‘§T -t aoala) }S‘““)’

TN AN
0= V{ - 2‘5“3 (Z)+ 1 _%1__:;) (95} sin 6.

Since d is supposed to be extremely small, it follows from these expressions that when r is not greater than a
moderate multiple of a, the velocities R, Q are extremely small; but, however small be d, we have only to go far
enough from the cylinder in order to find velocities as nearly equal to -V cos g, +V sin g as we please. But the
distance from the cylinder to which we must proceed in order to find velocities R, Q which do not differ from their
limiting values -V cos g, +V sin g by more than certain given quantities, increases indefinitely as d decreases.
Hence, restoring to the fluid and the cylinder the velocity V, we see that in the neighbourhood of the cylinder the
motion of the fluid does not sensibly differ from a motion of translation, the same as that of the cylinder itself,
while the distance to which the cylinder exerts a sensible influence in disturbing the motion of the fluid increases
indefinitely as d decreases.

48. When we have formed the equations of motion of a fluid on any particular dynamical hypothesis, it
becomes a perfectly definite mathematical problem to determine the motion of the fluid when a given solid,
initially at rest as well as the fluid, is moved in a given manner, or to discuss the character of the analytical
solution in any extreme case proposed. It is quite another thing to enquire how far the principles which furnished
the mathematical data of the problem may be modified in extreme cases, or what will be the nature of the actual
motion in such cases. Let us regard in this point of view the case considered in the preceding article as a
mathematical problem. When the quantity of fluid carried with the cylinder becomes considerable compared with
the quantity displaced, it would seem that the motion must become unstable, in the sense in which the motion of a
sphere rolling down the highest generating line of an inclined cylinder may be said to be unstable. But besides the
instability, it may not be safe in such an extreme case to neglect the terms depending on the square of the velocity,
not that they become unusually large in themselves, but only unusually large compared with the terms retained,
because when the relative motions of neighbouring portions of the fluid become very small, the tangential pressures
which arise from friction become very small likewise.

Now the general character of the motion must be nearly the same whether the velocity of the cylinder be
constant, or vary slowly with the time, so that it does not vary materially when the cylinder passes through a space
equal to a small multiple of its radius. To return to the problem considered in Section Il1., it would seem that when
the radius of the cylinder is very small, the motion which would be expressed by the formulae of that Section would
be unstable. This might very well be the case with the fine wires used in supporting the spheres employed in
pendulum experiments. If so, the quantity of fluid carried by the wire would be diminished, portions being
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continually left behind and forming eddies. The resistance to the wire would on the whole be increased, and would
moreover approximate to a resistance which would be a function of the velocity. Hence, so far as depends on the
wire, the are of oscillation would be more affected by the resistance of the air than would follow from the formulae
of Section I11. Whether the effect on the time of oscillation would be greater or less than that expressed by the
formulae is difficult to say, because the increase of resistance would tend to increase the effect on the time of
vibration, while on the other hand the approximation of the law of resistance to that of a function of the velocity
would tend to diminish it.

SECTION V.

On the effect of internal friction in causing the motion of a fluid to subside. Application to the case of oscillatory
waves.

49. We have already had instances of the effect of friction in causing a gradual subsidence in the motion of a
solid oscillating in afluid; but aresult in may easily be obtained from the equations of motion in their most general
shape, which shews very clearly the effect of friction in continually consuming a portion of the work of the forces
acting on the fluid.

Let P, P, P; be the three normal, and T, T, T3 the three tangential pressures in the direction of three
rectangular planes parallel to the co-ordinate planes, and let D be the symbol of differentiation with respect to t
when the particle and not the point of space remains the same. Then the general equations applicable to a
heterogeneous fluid (the equations (10) of my former paper) are

Du dpP, dT, dT, .
0 (’D’t _X> +0 d,g; 42200 (132),

with the two other equations which may be written down from symmetry. The pressures P, &c. are given by the
equations

rdy  dun o
3), T,=—u (G + ) - (133)

du
P‘=p_2’“(d_x_ y

and four other similar equations. In these equations

du dv dw

38=%+d:&+ d; ....................

At the end of thetimet let V be the vis viva of alimited portion of the fluid, occupying the space which lies
inside the closed surface S, and let V + D V be the vis viva of the same mass at the end of thetimet + Dt. Then

V={flp 0"+ 9"+ w*)de dydz,

DV =2D¢ Jﬂp <u%: + g: +w %@f) de dy dz.....(135),

the triple integral s extending throughout the space bounded by S. Substituting now for Du/Dt,_&c. their values
given by the equations of the system (132), we get
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DV=2thffp(uX+vY+wZ)dwdudz

o (e )0

dy 7
+w (dP dT dT,

A >} dodyde......... (136).

The first part of this expression is evidently twice the work, during the time Dt, of the external forces which act
all over the mass. The second part becomes after integration by parts

= 2Dt [{(wP, +vT, + wT,) dy dz — 2Dt [ (vP, + wT, + uT,) dz d=
= 2Dt [ (wP,+ uT, + vT,) dx dy

+2Dt”f{g—zl’l+@P +3—”‘”P3+<%+%> T,+<%’+§—Z> T,
()

The double integrals in this expression are to be extended over the whole surface S. If dS be an element of this
surface, I' m' n' the direction-cosines of the normal drawn outwards at dS, we may write I’dS, m'dS, n'dS for dydz,
dzdx, dxdy. The second part of DV thus becomes

~2Dtff{u(UP,+m'T,+n'T,) + v (m'P,+ T, + I'T)
+w @ P+ UT, +m'T)} dS

The coefficients of u, v, w in this expression are the resolved parts, in the direction of x, y, z, of the pressure on a
plane in the direction of the elementary surface dS, whence it appears that the expression itself denotes twice the
work of the pressures applied to the surface of the portion of fluid that we are considering.

On substituting for P, &c. their values given by the equations (133), (134), we get for the last part of DV

+2Dtmp du Z; - )dwdydz
o 8 28 (5 4 8]
+(%+%)> +(%U+%) +($; dx)mwdydz

In this expression p denotes, in the case of an elastic fluid, the pressure statically corresponding to the density
which actually exists about the point whose co-ordinates are x, y, z, and the part of the expression which contains p
denotes twice the work converted into vis viva in consegquence of internal expansions, and arising from the forces
on which the elasticity depends. The last part of the expression is essentially negative, or at least cannot be
positive, and can only vanish in one very particular case. It denotes the vis viva consumed, or twice the work lost in
the system during the time dt, in consegquence of internal friction. According to the very important theory of Mr
Joule, which is founded on a set of most striking and satisfactory experiments, the work thus apparently lost isin
fact converted into beat, at such arate, that the work expressed by the descent of 772 Ibs through one foot, supplies
the quantity of beat required to raise 1 Ib. of water through 1° of Fahrenheit's thermometer.

50. The triple integral containing u can only vanish when the differentia coefficients of u, v, w satisfy the five
following equations,
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du_dv _dw
P d; dz dz i ...(137).
v W w 17 U v
ety =% wre=% HTe=°

These equations give immediately the following expressions for the differentials of u, v, w, in which the
co-ordinates alone are supposed to vary, the time being constant:

du = 8dx — 0”'dy + w"dz
dv =8dy —w'dz +o”de ... (138).
dw = 8dz — 0”dz + o'dy

In these equations d, w, w", w" are certain functions of which the forms are defined by the equations (138), but
need not at present be considered. It follows from equations (138) that the motion of each element of the fluid
within the surface S is compounded of a motion of translation, a motion of rotation, and a motion of dilatation
alike in all directions. So far as regards the first two kinds of motion, the fluid element moves like a solid, and of
course there is nothing to call internal friction into play. For the reasons stated in my former paper, | was led to
assume that a motion of dilatation alike in all directions (which of course can only exist in the case of an elastic
fluid) has no effect in causing the pressure to differ from the statical pressure corresponding to the actual density,
that is, in occasioning a violation of the functional relation commonly supposed to exist between the pressure,
density, and temperature. The reader will observe that thisis a totally different thing from assuming that a motion
of dilatation has no effect on the pressure at all.

When the fluid isincompressible d = 0, and it may be proved without difficulty that w', w' w" are constant, that
isto say, constant so far as the co-ordinates are concerned. In this case we get by integrating equations (137)
t=0—a"y+w'z
v=b—0z +"r;. ..cccceooiiin. (139).

w=c¢ —o"z +0y

Hence, in the case of an incompressible fluid, unless the whole mass comprised within the surface S move
together like a solid, there cannot fail to be a certain portion of vis viva lost by internal friction. In the case of an
elastic fluid, the motion which may take place without causing a loss of vis viva in consegquence of friction is
somewhat more general, and corresponds to velocities u + Du, v + Dv, w + Dw where u, v, w are the same as in
(139), and

Au= Sw-{-2(am+/3y+fyz)w—a(a;”+y’+zz),

with similar expressions for Dv and Dw In these expressions a, b, g are three constants symmetrically related to x,
Yy, Z, and d is a constant which has the same relation to each of the co-ordinates*.

* See note C. At theend.

51. By means of the expression given in Art. 49, for the loss of vis viva due to interna friction, we may readily
obtain a very approximate solution of the problem: To determine the rate at which the motion subsides, in
consequence of internal friction, in the case of a series of oscillatory waves propagated along the surface of aliquid.

Let the vertical plane of xy be paralldl to the plane of motion, and let y be measured vertically downwards from
the mean surface; and for simplicity's sake suppose the depth of the fluid very great compared with the length of a
wave, and the motion so small that the square of the velocity may be neglected. In the case of motion which we are
considering, udx + vdy is an exact differential do when friction is neglected, and
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b =ce™ sin(mr —nt)..oooeeiiiinnn (140),

where ¢, m, n are three constants, of which the last two are connected by a relation which it is not necessary to
write down. We may continue to employ this equation as a near approximation when friction is taken into account,
provided we suppose ¢, instead of being constant, to be a parameter which varies slowly with the time. Let V be the
vis viva of agiven portion of the fluid at the end of the timet, then

V=pcm®[[fe dedydz ..o (141).

But by means of the expression given in Art. 49, we get for the loss of vis viva* during the time dt, observing that
in the present case mis constant, w = 0, d = 0, and udx + vdy = df , where f, isindependent of z,

dpdt f f f f dzd’ (d2¢> +2 ( ddggl)y) }dw dy dz,

which becomes, on substituting for f its value,

Suctm?* di[[fe™™ da dy dz.

* [Thereis an oversight here, which M. Boussineseq has pointed out (Mémoires des Savans Etrangers, Tome XXIV. No. 2, p. 34). 1 should have said
“the loss of energy." Now in a series of waves of small disturbance the total energy is half kinetic and half potential. Hence the reduction of energy
consequent upon a reduction in the amplitude falls half on the kinetic and half on the potential energy. Hence the reduction of the kinetic energy or vis
viva is only hdf of that given by the formula in the text, and therefore the expression for dc/dt is twice what it ought to be. Hence the numerical
coefficient in the index of the exponential should be 8 instead of 16; and retaining the same numerical data as in the examples, we should have for the
ripplesc : ¢o :: 1: 0.5337, and the height of the long waves would be reduced in aday by little more than the one four-hundredth part.]

But we get from (141) for the decrement of vis viva, the same mass arising from the variation of the parameter c
2 dc =2y
—2pmc%dtfffe dz dy de.

Equating the two expressions for the decrement of vis viva, putting for m its value 2 pl * where| is the length of a
wave, replacing mby mr integrating, and supposing ¢, to be the initial value of ¢, we get

162t
-

c=ce

It will presently appear that the value of Ol for water is about 0.0564, an inch and a second being the units of
space and time. Suppose first that | is two inches, and t ten seconds. Then 16 p = 1.256, and c: co :: 1 : 0.2848,
so that the height of the waves, which varies as c, is only about a quarter of what it was. Accordingly, the ripples
excited on asmall pool by a puff of wind rapidly subside when the exciting cause ceases to act.

Now suppose that is 40 fathoms or 2880 inches, and that t is 86400 seconds or a whole day. In this case 16p
mitl -? is equal to only 0.005232, so that by the end of an entire day, in which time waves of this length would
travel 574 English miles, the height would be diminished by little more than the one two-hundredth part in
consequence of friction. Accordingly, the long swells of the ocean are but little allayed by friction, and at last break
on some shore situated at the distance of perhaps hundreds of miles from the region where they were first excited.

52. It isworthy of remark, that in the case of a homogeneous incompressible fluid, whenever udx + vdy + wdz
is an exact differential, not only are the ordinary equations of fluid motion satisfied*, but the equations obtained
when friction is taken into account are satisfied likewise. It is only the equations of condition which belong to the
boundaries of the fluid that are violated. Hence any kind of motion which is possible according to the ordinary
equations, and which is such that udx + vdy + wdz is an exact differential, is possible likewise when friction is
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taken into account, provided we suppose a certain system of normal and tangential pressures to act at the
boundaries of the fluid, so as to satisfy the equations of condition. The requisite system of pressuresis given by the
system of equations (133). Since mdisappears from the general equations (1), it follows that p is the same function
as before. But in the first case the system of pressures at the surfacewasP; =P, =P3; =p, T; = T, = T3 = 0. Hence
if DP, &c. be the additional pressures arising from friction, we get from (133), observing that d = 0, and that udx
+ vdy + wdz is an exact differential df,.

2 2
AP1=_2:“’J¢ AP2=_2:‘L3ﬁ¢

dz*’ Y’
AP, =—2 Z—Z‘Z’ ..................... (142),
- d’¢
ATE = - 2’.6 mg .................. (143).

* |t is here supposed that theforces X, Y, Z are such that Xdx + Ydy + Zdz is an exact differential.

Let dS be an element of the bounding surface, I', m', n* the direction-cosines of the normal drawn outwards,
DP, DQ, DR the components in the direction of x, y, z of the additional pressure on a plane in the direction of dS.
Then by the formulae (9) of my former paper applied to the equations (142), (143) we get

- e, d, dP
AP-——2,u{l CE o m dZd—y”'dw‘az} . (144),

with similar expressions for DQ and DR, and DP, DQ,, DR are the components of the pressure which must be
applied at the surface, in order to preserve the original motion unaltered by friction.

53. Let us apply this method to the case of oscillatory waves, considered in Art. 51. In this case the bounding
surface is nearly horizontal, and its vertical ordinates are very small, and since the squares of small quantities are
neglected, we may suppose the surface to coincide with the plane of xz in calculating the system of pressures which
must be supplied, in order to keep up the motion. Moreover, since the motion is symmetrical with respect to the
plane of xy, there will be no tangential pressure in the direction of z, so that the only pressures we have to calculate
are DP,, and DT3;, We get from (140), (142), and (143), putting y = O after differentiation,

AP, = - 2um’csin (mz —nt), AT, =2um’c cos (mx — nt)...(145).

If uy, v1 be the velocities of the surface, we get from (140), putting y = O after differentiation,

u, = mc cos (mx — nt), = — mg¢ sin (mex — nt)...(146).

1

It appears from (145) and (146) that the oblique pressure which must be supplied at the surface in order to keep
up the motion is constant in magnitude, and always acts in the direction in which the particles are moving

The work of this pressure during the time dt corresponding to the element of surface dx dz, is equal to
dedz(AT, . wdt + AP, . vdt).
Hence the work exerted over a given portion of the surfaceis equal to

2um’c’dt [[dz dz.
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In the absence of pressures DP,, DT, at the surface, this work must be supplied at the expense of vis viva. Hence
4nm3c? dt adx dz dz is the vis viva lost by friction, which agrees with the expression obtained in Art. 51, as will be
seen on performing in the latter the integration with respect to y, the limitsbeingy =0toy = ¥.

PART II.

COMPARISON OF THEORY AND EXPERIMENT.
SECTION I.

Discussion of the Experiments of Baily, Bessel, Coulomb, and Dubuat™*.

54. THE experiments discussed in this Section will be taken in the order which is most convenient for
discussion, which happens to be almost exactly the reverse of the chronological order. | commence with the
experiments of the late Mr Baily, which are described in the Philosophical Transactions for 1832, in a memoir
entitled "On the Correction of a Pendulum for the Reduction to a Vacuum: together with Remarks on some
anomalies observed in Pendulum experiments.”

* [At the time when this paper was read, the relation between mand r cannot be said to have been known. It istrue that it may be inferred (at least
for air, and thence presumably for other gases) from certain of Graham's experiments on the transpiration of gases. These however had been but
recently published, having appeared in the Philosophical Transactions for 1846; and it was not till many years afterwards, about 1859, that Maxwell
first inferred from the kinetic theory of gases the law that bears his name, namely that the coefficient of viscosity misindependent of the density.

In the comparison of theory and experiment as regards the effect of the presence of air on the motion of pendulums, | relied mainly on the
experiments of Baily, which were made by a direct method, while at the same time they were conducted with al the accuracy of modern physical
research, and embraced a great variety of forms of pendulum, many of them such as to admit of comparison with theory.

These experiments were strictly differential, giving the difference between the time of vibration at atmospheric pressure and in rarefied air. Had
the vacuum been absolutely perfect, the difference would have given at once the effect of air at the atmospheric pressure. Had it merely been very high,
the effect of the residual air on the time of vibration would have been insensible, and the result as regards the time would still have been the same. It is
true that the whole effect of the rarefied air would not thus disappear; as a result of Maxwell's law it would tend, as the exhaustion proceeded, to fall
wholly on the arc of vibration, and to approach afinite limit; and this limit would not begin to break down till an exhaustion was reached comparable
with the highest we have to deal with in radiometer vacua.

But in Baily's experiments no high exhaustions were aimed at; the air was merely pumped out till the pressure was reduced to about one inch of
mercury, and the effect of the air was supposed to be arrived at by increasing the observed difference in the times of vibration in the ratio of the
difference of densities to the atmospheric density. Asthe effect of the air at the lower density was too large to be neglected, it was necessary, in order to
compare with sufficient accuracy the results of experiment with the formulae of this paper, to know the relation between mand r as already mentioned,
| assumed in accordance with what appeared to be indicated by a single experiment of Sabin€'s that m varies as r, or in other words that mis
independent of the density. The results of the experiments when thus reduced seemed to indicate a most remarkable accord with theory.

When it became known that the law of nature is that mand not m independent of r, it seemed very strange that the experiments when reduced on
the assumption of awrong law as to the relation of mto r should have led to such a remarkable agreement with theory. | contemplated at one time
undertaking the re-computation of the whole series of Baily's experiments here discussed in accordance with Maxwell's law, and it was this that
delayed the reprinting of the present paper. The value of the result at the present time would however hardly repay the labour of the calculation, more
especially as the remarkable agreement between theory and observation notwithstanding the employment of awrong law as to the relation between m
and r admits of being readily explained, and the value of mobtained asin the text of being very approximately corrected, in avery smple manner. As
however thiswould be too long for afootnote, | must reserve it for an addition to be made at the end of the paper.]

The object of these experiments was, to determine by actua observation the correction to the time of vibration
due to the presence of the air in the case of a great number of pendulums of various forms. This was effected by
placing each pendulum in succession in a vacuum apparatus, by which means the pendulum, without being
dismounted, could be swung alternately under the full atmospheric pressure, and in air so highly rarefied as nearly
to approach to a vacuum. The paper, as originaly presented to the Royal Society, contained the results obtained
with 41 pendulums, the same body being counted as a different pendulum when swung in a different manner. Out
of these, 14 are of such forms as to admit of comparison with theory. An addition to the paper contains the results
obtained with 45 pendulums more, of which 24 admit of comparison with theory. The details of these additional
experiments are omitted, the results only being given.

Baily has exhibited the results obtained with the several pendulums in each of two ways, first, by the value of
the factor n by which the correction for buoyancy must be multiplied in order to amount to the whole effect of the
air as given by observation, and, secondly, by the weight of air which must be conceived to be attached to the
centre of gyration of the pendulum, adding to its inertia without adding to its weight, in order that the increased
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inertia, combined with the buoyancy of the air, may account for the whole effect observed. | shall uniformly write
n for Baily's n, in order to distinguish it from the n of Part I. of the present paper, which has a totally different
meaning. In the case of a pendulum oscillating in air, it will be sufficient, unless the pendulum be composed of
extremely light materials, to add together the effects of buoyancy and inertia. Hence if the pendulum consist of a
sphere attached to a fine wire of which the effect is neglected, or else of a uniform cylindrical rod, we may suppose
n =1 +k, wherek is the factor so denoted in Part I. so that if M' be the mass of air displaced, kM' will be the mass
which we must suppose collected at the centre of the sphere, or distributed uniformly along the axis of the cylinder,
in order to express the effect of the inertia of the air. The second mode of exhibiting the effect of the air was
suggested by Mr Airy, and is better adapted than the former for investigating the effect of the several pieces of
which a pendulum of complicated form is composed. Since the value of the factor n and that of the weight of air
are merely two different expressions for the result of the same experiment, it would be sufficient to compare either
with the result calculated from theory. In some cases, however, | have computed both. In almost all the calculations
| have employed 4-figure logarithms. The experimental result is sometimes exhibited to four figures, but no
reliance can be placed on the last. In fact, in the best observations, the mean error in different determinations of n
for the same pendulum appears to have been about the one-hundredth part of the whole, and that it should be so
small, is a proof of the extreme care with which the experiments must have been performed.

55. I commence with the 13th set of experiments—Results with plain cylindrical rods—page 441. This set
contains three pendulums each consisting of a long rod attached to a knife-edge apparatus. The result obtained
with each pendulum furnishes an equation for the determination of m and the theory is to be tested by the
accordance or discordance of the values so obtained. The principal steps of the calculation are contained in the
following table.

Determination of Qi by means of Baily's experiments with plain cylindrical rods.

Pendulum rod No.|Diameter| Timeof | n by | Correction | Deduced |Corresponding | Resulting
2a  |Vibration experiment|for confined| valueof k | valueof m | vaue of
t space (by by Ond
theory) |experiment
Copper, 58.8incheslong | 21| 0.410 | 1.0136 2.932 - 0.009 1.923 1.5445 0.1166
Brass, 56.4 incheslong [43| 0.185 | 0.9933 | 4.083 -0-002 3.081 0.7000 0.1175
Steel, 56.4 incheslong | 44| 0.072 | 0.9933 7.530 6.530 0.2822 0.1134

In this table the first column explains itself. The next contains the reference number. In the case of the copper
rod | have replaced 42 by 21, under which number the details of the experiment will be found. The diameters of the
rods are expressed in decimals of an inch. The time of vibration of the pendulum No. 21 may be got from the tables
at the end of Baily's memoir, which contain the details of the experiments. Nos. 43 and 44 belong to the
"additional experiments,” of which all the details are suppressed. Baily has not even given the times of vibration,
not having been aware of the circumstance, indicated by the theory of this paper, that the factor n  and the weight
of air which must be conceived as dragged by the pendulum are functions of the time of vibration. Accordingly. in
the cases of the pendulums Nos. 43 and 44, and in all similar cases, | have calculated the time of vibration by the
ordinary formulae of dynamics. In calculating t, | have added 1.55 inch, the length of the shank of the knife-edge
apparatus, to the length of the rods. The result so abtained is abundantly accurate enough for my purpose. Had the
rod, retaining its actual length, been supposed to begin directly at the knife-edge, the error thence resulting in the
value of t, or rather the corresponding error in the calculated value of n or k, might just have been sensible. The
fifth column in the above table is copied from Baily's table. The next contains a small correction necessary to
reduce the value of n got from observation to what would have been got from observations made in an unlimited
mass of fluid. It is calculated from the formula 2a? (b - %)™ or 2a% nearly, which is obtained from the ordinary
equations of hydrodynamics, and therefore it cannot be regarded as more than a rude approximation. It will be
useful, however, as affording an estimate of the magnitude of the effect produced by confining the air. The
diameter of the vacuum tube (whether external or internal is not specified) is stated to have been six inches and a
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half, whence 2b = 6.5. The values of k given in the next column are obtained by applying the correction for
confined space to Baily's values of n, and subtracting unity. The value of m corresponding to each value of k was
got by interpolation from the table near the end of Section I11. of the former part of this paper. For k = 1.923 the
interpolation is easy. The value 3.081 happens to be almost exactly found in the table. For k = 6.530, a remark
aready made will be found to be of importance, namely, that the first differences of m? (k - 1) are nearly constant.
The last column contains the value of Ont obtained from the equation

m=2¢ /7
T2A uT
which contains the definition of m.

It will be observed that the three values of Om are nearly identical. Of course any theory professing to account
for a set of experiments by means of a particular value of a disposable constant, when applied to the experiments
would lead to nearly the same numerical value of the constant if the experiments were made under nearly the same
circumstances. But in the present case the circumstances of the experiments are widely different. The diameter of
the steel rod is little more than the sixth part of that of the copper rod, and the value of k obtained by experiment
for the steel rod is more than three times as great as that obtained for the copper rod. It is a simple consequence of
the ordinary theory of hydrodynamics that in the case of along rod oscillating in an unlimited fluid k = 1, and we
see that this value of k must be multiplied, in round numbers, by 2, by 3, and by 6 1/2 in order to account for the
observed effect. The value 1.5445 of m is so large that the descending series comes into play in the calculation of
the function k, while 0.2822 is so small that the ascending series are rapidly convergent. Hence the near agreement
of the values of O deduced from the three experiments is a striking confirmation of the theory. The mean of the
three is 0.1158, but of course the last figure cannot be trusted. | shall accordingly assume as the value of the square
root of the index of friction of air in its average state of pressure, temperature, and moisture

Vu' =0116.

It is to be remembered that O expresses a length divided by the square root of atime, and that the numerical
value above given is adapted to an English inch as the unit of length, and a second of mean solar time as the unit
of time.

56. | now proceed to compare the observed values of n with those calculated from theory with the assumed
value of Q. | begin with the same cylindrical rods as before' together with the long brass tubes Nos. 35 to 38. The
diameter of this tube was 1.5 inch, and its length 56 inches. The ends were open, but as the included air was
treated by Mr Baily in the reduction of his experiments as if it formed part of the pendulum, we may regard the
pendulum as a solid rod. The tube was furnished with six agate planes, represented in the wood-cut at page 417,
which rested on fixed knife-edges. The pendulums Nos. 35, 36, 37, and 38 consisted of the same tube swung on the
planes marked A, C, a, c. In air the pendulum swung at the rate of about 90080 vibrations in a day, so that t =
0.9596 nearly. The values of n aobtained with the end planes A, ¢ were dlightly though sensibly greater than the
values obtained with the mean planes C, a. | shall suppose the mean of the four values of n, namely 2.290, to be
the result of the experiments. In the following table the difference between the theoretical and experimental values
of n is exhibited both by decimals and as a fractional part of the former of these values.
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Baily's results with a long brass tube and with long cylindrical rods.

No. 2a. m K Addfor | Total n n by Difference.
confined by |experiment
space. theory.

35t038| 15 |5849| 1.242 | 0.122 2.364 2290 |-0.074, or -1/32
210r42(0.410|1555| 1917 | 0.009 2.926 2932 |+0.006, or +1/489

43 |0.185|0.7089| 3.055 | 0.002 4.057 4.083 |+0.026, or +1/157
44 10.072|0.2759| 6.670 7.670 7.530 |-0.140, or -1/54

It will be seen a once how closely the experiments are represented by theory. The largest proportionate
difference occurs in the case of the brass tube, and even that is less than one-thirtieth. A glance at Baily's
wood-cut at page 417 will shew that the six planes with which the tube was furnished caused the whole figure to
deviate sensibly from the cylindrical form. Moreover the resistance experienced by each element of the cylinder
has been caculated by supposing the element in question to belong to an infinite cylinder oscillating with the
same linear veocity, and the resistance thus determined must be a little too great in the immediate
neighbourhood of the ends of the cylinder, where the free motion of the air is lessimpeded than it would be if the
cylinder were prolonged. Lastly, the correction for confined space is calculated according to the ordinary
equations of hydrodynamics, and on that account, as well as on account of the abrupt termination of the cylinder,
will be only approximate. The small discrepancy between theory and observation, as well as the small difference
(amounting to about the 1/83rd of the whole) detected by experiment between the results obtained with the
extreme planes and those obtained with the mean planes, may reasonably be attributed to some such causes as
those just mentioned. In the case of the steel rod or wire, the difference between theory and observation may be
altogether removed by supposing a very small error to have existed in the measurement of the diameter of the
rod. Since, as we have seen, the observation is satisfied by m = .02822, and (147) givesa i m when ni and t
are congtant, it is sufficient, in order to satisfy the experiment, to increase the diameter of the rod in the ratio of
0.2759 to 0.2822, or to suppose an error of only 0.0017 inch in defect to have existed in the measurement of the
diameter.

57. | proceed next to the experiments on spheres attached to fine wires. The pendulums of this construction
comprise four 1 1/2-inch spheres, Nos. 1, 2, 3, and 4; three 2-inch spheres, Nos. 5, 6, and 7; and one 3-inch
sphere, No. 66. Nos. 8 and 9 are the same spheres as Nos. 5 and 7 respectively, swung by suspending the wire
over acylinder instead of attaching it to a knife-edge apparatus. As this mode of suspension was not found very
satisfactory, and the results are marked by Baily as doubtful cases, | shall omit the pendulums Nos. 8 and 9,
more especialy as with reference to the present inquiry they are merely repetitions of Nos. 5 and 7.

In the case of a sphere attached to a fine wire of which the effect is neglected, and swung in an unconfined
mass of fluid, we have by the formulae (52)

_ 9 W
Ic—1}+% B et (148),

2a being in this case the diameter of the sphere. Before employing this formula in the comparison of theory and
experiment, it will be requisite to consider two corrections, one for the effect of the wire, the other for the effect
of the confinement of the air by the sides of the vacuum tube.

| have already remarked at the end of Section IV., Part I., that the application of the formulae of Section Ill. to

the case of such fine wires as those used in pendulum experiments is not quite safe. Be that as it may, these
formulae will at any rate afford us a good estimate of the probable magnitude of the correction.
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Let | be the length, a;, the radius, V; the volume of the wire, V the volume of the sphere, | the moment of
inertia of the pendulum, I’ that of the air which we may conceive dragged by it, H the sum of the lements of the
mass of the pendulum multiplied by their respective vertical distances below the axis of suspension, H' the same
for the air displaced, s the density of the air. Then the length of the isochronous simple pendulum is IH™ in
vacuum, and (1 + I’) (H - H') * in air, and the time of vibration is increased by the air in the ratio of 1"?H"?to (I
+ I"Y*2(H - H)™Y2 or, on account of the smallness of sigmain theratio of 1to 1 + 1/2 (I'l * + H'H %) nearly. Now
1/2 H'H " is the correction for buoyancy, and therefore

I' H
el = T e e 149).
ll l—Hl'I"' ( )

We have aso, if k; be the value of the function k of Section Il1., Part I.,

I keV (4 af+3kaVil H'=aV(+a)+iaVl..(150),
and HI = (1 + &) * very nearly, Substituting in (149), expanding the denominator, and neglecting V,* we get

v I\ VL
n-1=k+b k() 1R

Now V; is very small compared with V, and it is only by being multiplied by the large factor k; that it becomes
important. We may then, without any material error, replace the last term in the above equation by 1/3V; V* I (12

+a?)? and if I be the length of the isochronous simple pendulum, we may suppose | + a = | and replace I> (I +
a®)? by 1- 2al " sincea is small compared with | . We thus get, putting Dn for the correction due to the wire,

V. 2u
An=1 =} (l — x) (lcl -1).

Substituting for k; - 1 from (115), and for m from (147), inwhich equations, however, k;, a;, must be supposed
to be written for k, a, expressing V4, V in terms of the diameters of the wire and sphere, and neglecting as before a2
in comparison with | 2 we get

Ap == 37:‘,2“) BT (151),
{Lz + U) } (2a)
where
4 w'r . -
CL=log. BT 057720 152).
L 10gi2al\/w 0577 (152)

It is by these formulae that | have computed the correction for the wire in the following table. In the
experiments, the time of oscillation was so nearly one second that it is sufficient in the formulae (148), (151), and
(152) toput t =1, and take | for the length of the seconds' pendulum, or 39.14 inches.

With respect to the correction for confined space, it seems evident that the vacuum tube must have impeded the
free motion of the air, and consequently increased the resistance experienced by the pendulum when it was swung
in air, and that the increase of resistance caused by the cylindrical tube must have been somewhat less than that
which would have been produced by a spherical envelope of the same radius surrounding the sphere. The effect of
a spherical envelope has been investigated in Section Il., Part |. ; but as we are obliged at last to have recourse to
estimation, it is needless to be very precise in calculating the increase of resistance due to such an envelope, and we
may accordingly employ the expression obtained from the ordinary theory of hydrodynamics. According to this
theory, the increase of the factor k, which is due to the envelope, is equal to 3/2a® (b® - a°) %, or 3/2 a®b™ nearly,
when b is large compared with a. The increase due to a cylindrical envelope whose axis is vertical, and
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consequently perpendicular to the direction of oscillation of the sphere, may be estimated at about two-thirds of the
increase due to a spherical envelope of the same diameter. | have accordingly taken + a®b™ for the correction for
confined space, and have supposed 2b = 6.5 inches.

The diameter of the wire employed in the pendulums Nos. 1, 2, 3, 5, 6, and 7, is stated to have been about the
1/70 th of an inch, and that of the wire employed with the heavy brass sphere No. 66, about 0.023 inch. The ivory
sphere No. 4 was swung with a fine wire weighing rather more than half a grain. Taking the weight at half agrain,
and the specific gravity of silver at 10.5, we have for this wire 2a; = 0.00251 nearly. The diameters of the three
brass spheres in the following table are taken from page 447 of Baily's memoir. The several parts of which,
according to theory, n is composed, are exhibited separately.

The mean error in different determinations of n for the same sphere was about 0.01 or 0.02, and this does not
include errors arising from small errors in specific gravities, &c. Hence, if we except the spheres Nos. 1, 2, and 4,
the discrepancies between theory and experiment are altogether insignificant. In considering the confirmation
thence arising to the theory, it must be borne in mind that the theory did not furnish a single disposable constant,
inasmuch as Qu' was already determined from the experiments

Baily's results with spheres suspended by fine wires.

No. and kind Diameter of| Diameter n by theory
sphere here of For For inertia, | Additional
2a wire. buoyancy | on common| for inertia
2 theory | on account
of internal
friction
1 1/2-INCH SPHERES
No. 1, Platina 1.44 0.01429 1 0.5 0.289
No. 2, Lead 1.46 0.01429 1 0.5 0.285
No. 3, Brass 1.465 0.01429 1 0.5 0.284
No. 4, lvory 1.46 0.00251 1 0.5 0.285
2-INCH SPHERES
No. 5 Lead 2.06 0.01429 1 0.5 0.202
No. 6, Brass 2.065 0.01429 1 0.5 0.202
No. 7, lvory 2.06 0.01429 1 0-5 0.202
3-INCH SPHERE
No. 66, Brass 3.030 0.023 1 0-5 0.137
No. n by theory (continued)
Correction | Correction for| Total n By Difference
for wire |confined space experiment
1 0.035 0.011 1.835 1.881. [+0.046, or + 1/40
2 0.035 0.011 1.831 1.871 |+0-040, or + 1/46
3 0.035 0.011 1.830 1.834 [+0.004, or +1/457
4 0.016 0.011 1.812 1.872 |+0.060, or + 1/30
5 0.012 0.032 1.746 1.738 |-0-008, or + 1/218
6 0.012 0.032 1.746 1.751 |+0.005, or + 1/349
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7 0.012 0.032 1.746 1.755 |+0.009, or +
1/194
66 0.005 0.101 1.743 1.748 |+0.005, or + 1/349

with cylindrical rods. The result obtained with the brass sphere No. 3 happens to agree almost exactly with theory.
However, as the results obtained with this sphere exhibited some anomalies, it seems best to exclude it from
consideration. The value of n then, which belongs to a 1%-inch sphere, appears to exceed by a minute quantity the
value deduced from theory. The difference is indeed so small that it might well be attributed to errors of
observation, were it not that al the spheres tell the same tale. Thus the error
+ 0.046 in the case of the platina sphere corresponds to an error of less than the fortieth part of a second in the
observation of an interval of time amounting to 4 1/2 hours. If the apparent defect, amounting to about 0.04 or
0.05, in the theoretical result be real, it may be attributed with probability to an error in the correction for the wire.
This would be no objection to the theory, for it will be remembered that the theory itself indicated the probable
failure of the formulae generally applicable to a long cylinder when the cylinder comes to be of such extreme
fineness as the wires employed in pendulum experiments.

58. The preceding experiments of Baily's are the most important for the purposes of the present paper,
inasmuch as they were performed on pendulums of simple and very different forms; but there still remain three sets
of experiments, the fourteenth, fifteenth, and sixteenth, in which the pendulum consisted of a combination of a
sphere and a rod, so that the results can be compared with theory. The details of these experiments being
suppressed, | have been obliged to calculate the time of oscillation from the ordinary formulae of dynamics, but the
results will no doubt be accurate enough for the purpose required. In all the calculations | have supposed the rod to
reach up to the axis of suspension, and have consequently added 1.55 inch (the length of the shank of the
knife-edge apparatus) to the length of the rod, and have added to the weight of the rod a quantity bearing to the
whole weight the ratio of 1.55 inch to the whole length.

In the case of the spheres attached to the ends of the rods (sets 14 and 16) the process of calculation is as
follows. Let 1 be the length of the rod increased by 1.55 inch, W, its weight, increased as above explained, a the
radius and W the weight of the sphere, |lambda the length of the isochronous simple pendulum. Then supposing the
masses of the rod and sphere to be respectively distributed along the axis, and collected at the centre, which will be
quite accurate enough for the present purpose, and putting a for the ratio of a to |, we have by the ordinary formula

AW+ (1 +a) W

NI A Ara W

whencet, the time of vibration, is known. The formula (148) then gives k, which applies to the sphere, and (147)
gives m the a in this formula being the radius of the rod, from whence k; which applies to the rod, may be got by
interpolation from the table in Part 1. Let Dk Dk; be the corrections which must be applied to k, k; on account of the
confined space of the vacuum apparatus, and let S;, S be the specific gravities of the rod and sphere respectively;
then we get by means of the formulae (149), (150)

1 (k, + Ak,) g‘+(1+a)’(k+Ak)—g
n-1= IW A+ +ay W
WA+ W
e

w

The first of the two factors connected by the sign ~ in this equation isequal to s™ I' I, and if we want to calculate
the weight of air which we must conceive attached to the centre of gyration of the pendulum in order to alow for
the inertia of the air, we have only to multiply the factor just mentioned by s and by the weight of the whole
pendulum. The following table contains the comparison of theory and experiment in the case of the 14th set. The
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rods here mentioned are the same as those which composed the pendulums Nos. 21, 43, and 44, and the spheres
are the three brass spheres of Nos. 3, 5, and 66. It appears from p. 432 of Baily's paper that his results are all
reduced to a standard pressure and temperature, on the supposition that the effect of the air on the time of vibration
is proportional to its density. The theory of the present paper shews that this will only be the case if m be constant,
which however there is reason for supposing it to be when the pressure alone varies. Be that as it may, no material
error can be produced by reducing the observations in this way, because the difference of density in any pair of
experiments did not much differ from the density of air at the standard pressure and temperature. The standard
pressure and temperature taken were 29.9218 inches of mercury and 32° F., and the assumed specific gravity of air
at this pressure and temperature was the 1/770th of that of water, so that in the calculations from theory it is to be
supposed that s™* = 770.

If w be the weight of the whole pendulum, w' that of the air which we must suppose attached to the pendulum at
its centre of gyration in order to express the effect of the inertia of the air, S the vibrating specific gravity of the
pendulum, the effects of buoyancy and inertiaare ass S ™ to ww™ but they are dso as 1 to n - 1, according to the
definition of the factor n, and therefore

aformula which may be employed to calculate w* when n is known.
Baily's results with spheres at the end of long rods.

No. 45 - 1 1/2-inch sphere with copper rod.
No. 46 - 2-inch sphere with ditto.

No. 47 - 3-inch sphere with ditto.

No. 48 - 1 1/2-inch sphere with brass rod.
No. 49 - 2-inch sphere with ditto.

No. 50 - 3-inch sphere with ditto,

No. 51 - 1 1/2-inch sphere with steel rod.
No. 52 - 2-inch sphere with ditto.

No. 53 - 3-inch sphere with ditto.

Vaueof n Weight of adhesive air, in grains
No.| By By Difference By By Difference
theory | experi- theory | Experi
ment -ment
45 | 2525 | 2.458 |-0.067,0r—1/38 | 4.863]|4.564 [-0.299, or -1/16
46 | 2202 | 2.234 |+0.032, or + 5.005|5.076 |+0.071, or +1/70
1/69

47 | 1957 | 1.873 |-0.084 or —1/23 7.071|6.425 |-0.646, or —1/11
48 | 2375 | 2.356 |-0.019, or —1/125| 1.447|1.417 |-0.030 or —1/48
49 | 2060 | 1.982 |-0.078or -1/26 2135|1973 |-0.162~or -1/13
50 | 1.631 | 1.9337? |+0.302 ? 4-411|4.868 ?| +0.457 ?

51 | 2099 | 2.3447 |+0.2457 0.682|0.834 ?| +0.152 ?
52 | 1.920 | 1.793 |-0.127, or -1/15 1.45711.259 |[-0.198, or -1/7
53 | 1.781 | 1.759 [-0.022, or -1/81 3.742|3.670 |-0.072, or -1/52

With respect to the two experiments marked ? Baily remarks, "These two experiments (with the pendulums
Nos. 50 and 51) are very unsatisfactory; and are marked as such in my journal. It was consequently my intention to
have repeated them; but the subject was overlooked till it was too late. | should propose their being rejected
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altogether.” If these two experiments be struck out, it will be seen that the differences between theory and
experiment are very small, especially when the difficulty of this set of experiments is considered, arising from the
frequency of the coincidences with the mean solar clock.

59. On account of the difficulty which Baily experienced in obtaining accurate results with the long rods and
spheres attached, he divided the brass and steel rods near the centre of oscillation, and after having cut off an inch
from each portion inserted the spheres where the rods had been divided. The results thus obtained constitute the
15th set of experiments. He afterwards removed the lower segments of the rods, and obtained the results contained
in the 16th set. | shall give the computation of the latter set first, inasmuch as the formulae to be employed are
exactly the same as those required for the 14th set. The experiments belonging to this set in which the spheres were
swung with iron wires have already been computed under the head of spheres attached to fine wires.

Baily's results with the spheres at the end of the short rods.

No. 60 - 1 1/2-inch sphere with brass rod.
No. 61 -2-inch sphere with ditto.
No. 62 -3-inch sphere with ditto.
No. 63 - 1 1/2-inch sphere with steel rod.
No. 64 - 2-inch sphere with ditto.
No. 65 -3-inch sphere with ditto.

No. Vaue of n Weight of adhesive air
By theory | By experiment Difference By theory | By experiment | Difference

60 2.149 2.198 +0.049, or 1.011 1.047 +0.036, or+1/28
+1/44

61 1.879 1.901 +0.022, or 1.619 1513 -0.106, or -1/15
+1/85

62 1.787 1.830 +0.043, or 3.970 4.202 +0.232, or +1/17
+1/42

63 1.960 1.904 -0.056, or -1/35 0.570 0.537 -0.033, or -1/16

64 1.785 1.785 -0.011, or — 1.239 1.227 -0.012, or /103
1/163

65 1.758 1.779 +0.021, or 3.609 3.720 +0.111, or +1/32
+1/84

Here again the differences between theory and experiment are extremely small. In the case of the pendulum No.
61, Baily's two results 1.901 and 1.513 appear to be inconsistent, as not agreeing with the formula (155).

60. The following table contains the values of t, k, and k; deduced from the given data, and employed in the
calculations of which the results are contained in the two preceding tables. It is added, partly to facilitate a
comparison of the circumstances of the different experiments, partly to assist in the re-computation of any of the
experiments, or the detection of any numerical error which I may have committed, | may here observe that | have
not, generally speaking, re-examined the calculations, except where an error was apparent, but that each step
requiring addition, subtraction, multiplication, or division, was checked immediately after it was performed. | have
not thought it requisite to check in this manner the taking of logarithms or antilogarithms out of atable.

Values of t, k, and k; employed in the calculation of the theoretical results employed in the two preceding tables.

(For the description of the pendulums Nos. 45 to 53, see p. 89.)

| Long rods Short rods |
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No. t k Ky No. t k kq
45 | 1.090 | 0.7968 | 1.951
46 | 1.158 | 0.7170 | 1.981
47 | 1.227 | 0.6523 | 2.010
48 | 1.155 | 0.8055 | 3.222 | 60 | 0.9517 | 0.7772 3.012
49 | 1.198 | 0.7207 | 3.264 | 61 | 0.9806 | 0.7005 3.042
50 | 1.222 | 0.6520 | 3.288 | 62 | 0.9982 | 0.6373 3.062
51 | 1.190 | 0.8099 | 7.272 | 63 | 0.9868 | 0.7824 6.649
52 | 1.199 | 0.7208 | 7.299 | 64 | 0.9954 | 0.7021 6.679
53 | 1.231 | 0.6525 | 7.396 | 65 | 1.0030 | 0.6377 6.714

The corrections for confined space employed are, for the spheres, (Dk), 0.0115, 0.0321, 0.1013; and for the rods
(Dk;) 0.009, 0.002, 0.000. These corrections are to be added to the values of k, k; given in the preceding table
before going on with the calcul ation.

61. In the 14th set of experiments, the weight of adhesive air due to the spheres alone has been computed by
Baily by subtracting from the whole weight, as given by observation, the weight due to the rods as given by the
13th set of experiments, taking account of the change of weight corresponding to the change in the position of the
centre of gyration, the point at which the air is supposed to be attached. According to theory, this process is not
legitimate, inasmuch as the weight dragged by arod is a function of the time of vibration, which is altered when a
sphere is attached to the end of the rod. But in the 15th set of experiments the spheres did not materially affect the
time of vibration, inasmuch as they were inserted nearly at the centre of oscillation of the rods, and therefore in this
case the process is legitimate. Accordingly, | think it is a sufficient comparison between theory and experiment in
the case of the 15th set, to compare the weights of air due to the spheres aone, as calculated by Baily, with the
weights calculated according to the theory of this paper with the assumed value of | have exhibited separately the
weight corresponding to the correction for confined space, in order to enable the reader to form an estimate of the
extent to which the results may be affected by the uncertainty relating to the amount of this correction.

Weights of air dragged by the spheres alone, as deduced from Baily's results with the spheres at the centre of
oscillation of the long rods.

By Theory
1 1/2-inch | 2-inch sphere | 3-inch sphere
sphere
Infreeair 0.431 1.060 3.002
Additional for confined space 0.006 0.048 0.476
Total -0.437 1.108 3.478
Difference, theory and experiment, as decimal -0.012 +0.001 -0.101
By Experiment
1 1/2-inch 2-inch 3-inch
sphere sphere sphere
From experiments with brass rod 0.446 1.180 3.382
From experiments with steel rod 0.405 1.039 3.371
Mean 0.425 1.109 3.377
Difference, as fraction -of the whole -1/36 +1/1108 -1/34

62. 1 pass now to Bessel's experiments described in his memoir entitled Untersuchungen tber die Lange des
einfachen Sekundewpendels, which is printed among the memoirs of the Academy of Sciences of Berlin for the
year 1826. The object of this memoir was to determine the length of the seconds pendulum by a new method,
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which consisted in swinging the same sphere with wires of two different lengths, the difference of lengths being
measured with extreme precision. In the calculation, the absolute length of the simple pendulum isochronous with
either the long or the short compound pendulum was regarded as unknown, but the difference of the two as known,
and this difference, combined with the observed times of oscillation, is sufficient for the determination of the
guantity sought. Nothing more would have been required if the pendulums had been swung in a vacuum; but
inasmuch as they were swung in air, a further correction was necessary to reduce the observations to a vacuum.
Since it is necessary to take into account the inertia of the air, as well as its buoyancy, in reducing the observations
to a vacuum, Bessel sought to determine by experiment the value of the factor k of which the meaning has been
already explained. The value of this factor, as Bessel remarked, will depend upon the form of the body; but he does
not seem, at least in his first memoir, to have contemplated the possibility of its depending on the time of
oscillation, and consequently he supposed it to have the same value for the long as for the short pendulum. When
the factor k is introduced, the equation obtained from the known difference of length of the two simple pendulums
contains two unknown quantities, namely k, and the length of the seconds' pendulum. To obtain a second equation,
Bessel made another set of experiments, in which the brass sphere was replaced by an ivory sphere, having as
nearly as possible the same diameter. The results obtained with the ivory sphere furnished a second equation, in
which k appeared with a much larger coefficient, on account of the lightness of ivory compared with brass. The two
equations determined the two unknown quantities.

Let | bethelength of the seconds pendulum, ty, t, the times of oscillation of the brass sphere when swung with
the short wire and long wire respectively, |, |,. the lengths of the corresponding simple pendulums, corrected for
everything except the inertia of the air, m the mass of the sphere, m; the mass of the fluid displaced; then

xtf(1+’—””;'k) =1

or, since m, is so small that we may neglect m,?
m
M (12 B)=1,

The long pendulum furnishes a similar equation, and the result obtained from the brass sphereis
2_ g2 MmN g )
A1) (1 " k) [ (156),

since I, - Iy is the quantity which is regarded as accurately known. The ivory sphere in like manner furnishes the
equation

A —1) (1 - :—2‘ T (157),

7

where the accented letters refer to that sphere. The equation for the determination of k results from the elimination
of | between the equations (156) and (157).

Now, according to the theory of this paper, the factor k has really different values for the long and short
pendulums. Let k; refer to the short, and k; to the long pendulum with the brass sphere, k;' to the short, and k;' to
the long pendulum with the ivory sphere. Then

AL (1 - o Ic‘> =1, At (1 M) =1,
m m

2
and therefore
my

L= (1= ) =M (1-2 k) oo s(158),

m
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In the equation resulting from the elimination of | between (156) and (157), let the values of I, - 15, and 1,'- |’
got from (158) and the similar equation relating to the ivory sphere be substituted. The result is

P m, 'e m, ., , m, ,,
(t, —tl)( __}C){% (1__;]02)_,512(1_%710‘)}
=({2 -t 2 _7LL‘ 2 _m__l r — ¢t 2 __.”l'
=, tl)<1 o k) {tz (1 u 112) t; <1 - k%

This equation is of the form
P+ Qm +Rm*=P+Qm + Rm},

and P = P', and Rm;%, R'm;?> may be neglected, so that the equation is reduced to Q = Q'. It is now no longer
necessary to distinguish between t, and t,' and between t; and t;" which may be supposed equal. Alsom : m":: S: §',
where S, S' are the specific gravities of the brass and ivory spheres respectively. Substituting in the equation Q =
Q', and solving with respect to k, we get

8, (8K, — S'k) —t*(SK,— 8'k,)
k’= 2 2 2 1 1 1/ -
(tgu_ tlz)(8_S/) ......... (109).

This equation contains the algebraical definition of that function k of which the numerical value is determined
by combining, in Bessel's manner, the results obtained with the four pendulums. Since the equation is linear so far
asregardsk, k; &c., we may consider separately the different parts of which these quantities are composed, and add
the results. For the part which relates to the spheres, regarded as suspended by infinitely fine wires, we have k',. =
k, and k;' = ky, since the radii of the two spheres were equal, or at least so nearly equal that the difference is
insensible in the present enquiry. We get then from (159)

which gives

Sincet, > t; and k, > k; the equations (161) shew that the value of k determined by Bessel's method is greater
than the factor which relates to the short pendulum, which was a seconds' pendulum nearly, and even greater than
that which relates to the long pendulum, as has been already remarked in Art. 6.

If ks be the factor relating to either sphere oscillating once in a second, and if the effect of the confinement of
the air be neglected, we have from the formula (148)

kl—:}:kg—%:kg—%::tlé:tzé:l,

and in Bessel's experiments t; = 1.001, t, = 1.721, 2a = 2.143 in English inches. We thus get from either of the
equations (160) or (161), on substituting 0.116 for O, k = 0.786. The value of the factor ks, which relates to the
sphere of the same size, swung as a seconds pendulum, is only 0.694, and k; may be regarded as equal to k;. The
formula (148) givesk, = 0.755.

63. We have next to investigate the correction for the wire. The effect of the inertia of the air set in motion by
the wire was altogether neglected by Bessel, and indeed it would have been quite insensible had the parts of the
correction for inertia due to the wire and to the sphere, respectively, been to each other in nearly the same ratio as
the parts of the correction for buoyancy. Baily, however, was led to conclude from his experiments that the effect of
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the wire was probably not altogether insignificant, and the theory of this paper |eads, as we have seen, to the result
that the factor n isvery large in the case of avery fine wire,

The ivory sphere in Bessel's experiments was swung with a finer wire than the brass sphere. It was for this
reason that | did not from the first suppose k;' = k; and ky' = k. Let Dk, Dk;, &c. be the corrections due to the wire.
The values of Dk, Dk, Dk,", Dky" may be got from the formula (151), in which it is to be remembered that | denotes
the length of the isochronous simple pendulum, not, as in Bessel's notation, the length of the seconds pendulum. It
is stated by Bessal (p. 131), that the wire used with the brass sphere weighed 10.95 Prussian grains in the case of
the long pendulum, and 3.58 grains in the case of the short. This gives 7.37 grains for the weight of one toise or 72
French inches. The weight of one toise of the wire employed with the ivory sphere was 6.28 — 2.04 or 4.24 grains
(p. 141). The specific gravity of the wire was 7.6 (p. 40), and the weight of a cubic line (French) of water is about
0.1885 grain. From these data it results that the radii of the wires were 0.003867 and 0.002933 inch English. The
formula (147) gives m , whence L is known from (152). The lengths of the isochronous simple pendulums were
about 39.20 inches for the short pendulum, and 116.94 for the long. On substituting the numerical values we get
from (151), sincek;=n;-landk,=n,-1,

Dk, = 0.0107, Dk, = 0.0286, Dk, ' = 0.0090, Dk,' = 0.0244.

The specific gravities of the two spheres were about 8.190 and 1.794, whence we get from (159) Dk = 0.0308, or
0.031 nearly.

The value of k deduced by Bessel from his experiments was 0.9459 or 0.946 nearly, which in a subsequent
paper he increased to 0.956. In this paper he contemplates the possibility of its being different in the cases of the
long and of the short pendulum, and remarks with justice that no sensible error would thence result in the length of
the seconds' pendulum, as determined by his method, but that the factor k would belong to the system of the two
pendulums.

The following is the result of the comparison of theory and experiment in the case of Bessel's experiments on
the oscillations of spheresin air.

Vaue of k belonging to the system of along and a short pendulum,
as determined experimentally by Bessel 0.956

Value deduced from theory, including the correction for the wire,
but not the correction for confined space 0.817
difference +0.139

I cannot find that Bessel has stated exactly the distance of the centre of the sphere from the back of the frame
within which it was swung, but if we may judge by the sketch of the whole apparatus which is given in Plate |., and
by a comparison of figs. 2 and 3, Plate 1., it must have been very small, that isto say, a small fraction of the radius
of the sphere*. If so, although the exact calculation of the correction for confined space would form a problem of
extreme difficulty, it may be shewn from theoretical considerations that the correction would be by no means
insensible, so that it might wholly or in part account for the difference + 0.139 between the results of theory and
observation. It is, however, not improbable, for a reason which has been already mentioned, that the theoretical
correction for the wire is not quite exact.

64. The experiments performed by Bessel on a sphere vibrating in water will be more conveniently considered
after the discussion of some experiment of Coulomb's, to which | now proceed. These experiments are contained in
amemoir entitled

* The measurement of either of Bessal'sfigures, figs. 5 or 6, Plate I1. gives 1.53 inch for the distance of the centre of the sphere from the surface of
the broad iron bar which formed the back of the frame, the surface of the bar being supposed truly vertical; and the measurement of fig. 2 giving 2.06
inches for the diameter of the sphere, it appears that the distance of the surface of the sphere from the surface of the bar was barely equa to haf the
radius of the sphere.
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Expériences destinées a déterminer la cohérence des fluides et les lois de leur résistance dans les mouvements
trés-lents which will be found in the 3rd Volume of the Mémoires de I'Institut, p. 246. The experiments which |
shall first consider are those which relate to the oscillations of disks suspended in water with their planes
horizontal. In these experiments the disk operated upon was attached to the lower extremity of a vertical cylinder
of copper, not quite half an inch in diameter, the axis of which passed through the centre of the disk, The cylinder
was suspended by a fine wire attached to its upper extremity. The under portion of the cylinder, together with the
attached disk, were immersed in water, the disk at the bottom of the cylinder being immersed to the depth of 4 or 5
centimetres below the surface. The upper portion carried a horizontal metallic graduated disk, by means of which
the arc of oscillation could be read off, and which, on account of its size and weight, mainly determined the inertia
of the system, so that the time of oscillation in the different experiments was nearly the same. The observations
were taken as follows. The whole system was turned very slowly round by applying the hands of the graduated
disk, taking care not to derange the vertical position of the suspending wire. The arc through which the system had
been turned was read by means of the graduation, or rather the system was turned through an are previously fixed
on ; the system was then left to itself, and the are again read off to a certain number of oscillations. Thus it was the
decrement of the are of oscillation that was observed; the time of oscillation was indeed also observed, but only
approximately, for the sake of determining a subsidiary quantity required in the calculation. Indeed, it will be
easily seen that the experiments were not adapted to determine the effect of the fluid on the time of oscillation. The
decrement of are so determined had to be corrected for the effect of the imperfect elasticity of the wire, and of the
resistance of the air against the graduated disk, and of the water against the portion of the copper cylinder
immersed. The amount of the correction was determined by repeating the observation when the lower disk bad
been removed.

It appeared from the experiments, first, that with the same disk immersed, the successive amplitudes of
oscillation decreased in geometric progression ; secondly, that with different disks the moment of the resisting
force was proportional to the fourth power of the radius. From these laws Coulomb concluded that each small
element of any one of the disks experienced a resistance varying as the area of the element multiplied by its linear
velocity. It should be observed that Coulomb was only authorized by his experiments to assert this law to be true in
the case of oscillations of given period, inasmuch as the time of oscillation was nearly the same in all the
experiments.

Let a be the radius of the disk in the fluid, t the time of oscillation, g the angular displacement of the disk,
measured from its mean position, |1 the moment of inertia of the whole system; and let 1 : 1 - m be the ratio in
which the are of oscillation is diminished in one oscillation. According to the formula (15) we have

e—nbt

for the factor which expresses the ratio of the arc of oscillation at the end of the timet to the initial arc. At the end
of one oscillation t = t, and the value of the above factor is 1 - m, which is given by observation. Putting for b its
value, inwhich Mg = I, and nt = p, we get

loge (1 —m)=— B;— \/2}8‘{ ............ (162).

Let T be the time of oscillation, and 1, the moment of inertia, when the under disk isremoved: then 1 = Iot? T
2, Also if M be the mass and R the radius of the large graduated disk, we have I, = % MR?, neglecting, as Coulomb
did, the rotatory inertia of the copper cylinder. Substituting in (162), we get

log. (1 — m)™* =2 wtputr= i 0’ R M™ ...... (163).

Let W be the weight of the disk in grammes. Then the mass of the disk is equal to that of W cubic centimetres or
1000 W cubic millimetres of water. Hence M = 1000 r W, a millimetre being the unit of length. Substituting in
(163), and solving with respect to Om we get
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N =1000 x 2t log, 10. 7 WR*Ta™ 71 log

210

(1 —m)*...(164),

and the same value of root Om ought to result from different experiments.

The weight of the disk is stated to have been 1003 grammes, and its diameter 271 millimetres, and it made 4
oscillations in 91 seconds. Hence W = 1003, R = 135.5, T = 22.75. The last three factors in (164) vary from one
experiment to another. After making experiments with three disks of different radii attached to the copper cylinder,
Coulomb made another set with nothing attached, for the purpose of eliminating the effect of the imperfect
elasticity of the wire. The following table contains the data furnished by experiment, together with the value of O
deduced from the several experiments. The latter is reduced to the decimal of an English inch, by including 2.5952
(the logarithm of the ratio of a millimetre to an inch) in the logarithm of the constant part of the 2nd member of
equation (164).

Determination of the value of O for water from Coulomb's experiments on the decrement of the arc of oscillation
of disks, oscillating in their own plane by the force of torsion.

No. | Diameter | Timeof |logy (1-m)*| valueof
of disk 2a four O
in oscillation ininches
millimetre s4t
s
1 195 97 0.0568 0.05519
2 140 92 0.021 0.05716
3 119 91 0.0135 0.05436
4 0 91 0.0058

In correcting the results of the first three experiments for the imperfect elasticity of the wire, Coulomb
calculated the values of m given by the four experiments, and subtracted the value given by the fourth from each of
the others. But it is at the same time easier and more exact to subtract the value of log (1 - m)™ given by the fourth
experiment from that given by each of the others. For if

dé ,df
- 20 a; , -— 20 EE
be the moments of two forces, each varying as the velocity, divided by the moment of inertia, the factors by which
theinitial arc of oscillation must be multiplied to get the arc at the end of the time t, first, when the two forces act
together, secondly, when the second force acts alone, are respectively, and that, whether the time t be great or
small. Hence if we subtract the logarithm of the second factor from that of the first we shall get the logarithm of
the factor due to the action of the first force alone. But if we put each factor under the form 1 - m, and subtract the
m of the second factor from the m of the first, we shall not get the m due to the first force alone, unless t be small
enough to allow of our neglecting the squares of ct and c't, or at least the product ctxc't. In truth, whent = t, the
quantities m are sufficiently small to be treated in Coulomb's manner without any material error, since the
corrected values of log (1 - m), obtained in the two ways, would only differ in the 4th place of decimals.

The numbers given in the last column of the above table were calculated from the formula (164), on
substituting for log (1 - m)™ the numbers found in the first three lines of the 4th column, corrected by subtracting
0.0058, The mean of the three results is 0.05557, but the three experiments are not equally vauable for the
determination of Om For the three numbers from which Om was deduced are 0.0510, 0.0152, 0.0077, and a given
error in the first of these numbers would produce a smaller error in O than that which would be produced by the
same error in the second, still more, than that which would be produced by the same error in the third. If we
multiply the three values of O by 510, 152, and 77, respectively, and divide the sum of the products by 510 + 152
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+ 77 or 739, we get 0.05551. We may then take 0.555 as the result of the experiments. Assuming Omi = 0.0555 we
have

log (1 m)~! from experiment 0-0568 in No. 1, 0021 in No. 2, 0-0135 in No. 3,
............... from theory 0:0571 0-0206 0:0137

difference - 00003 +0-0004 -0-0002

65. So far the accordance of the theoretical and observed results is no very searching test of the truth of the
theory. For, in fact, the theory is involved in the result only so far as this, that it shews that the resistance
experienced by a given small element of a disk oscillating in a given period varies as the linear velocity; since the
difference of periods in Coulomb's experiments was so small that the effects thence arising would be mixed up with
errors of observation. This law is so simple that it might very well result from theories differing in some essential
particulars from the theory of this paper. But should the numerical value of Om determined by Coulomb's
experiments on disks be found to give results in accordance with theory in totally different cases, then the theory
will receive a striking confirmation. Before proceeding to the discussion of other experiments, there are one or two
minute corrections to be applied to the value of Omi given above, which it will be convenient to consider.

In the first place, the result obtained in Art. 8 is only approximate, the approximation depending upon the
circumstance that the diameter of the revolving body is large compared with a certain line determined by the values
of m' and t. In the particular case in which the revolving solid is a circular disk, it happens that the approximate
solution satisfies the general equations exactly, except so far as relates to the abrupt termination of the disk at its
edge*. In consequence of this abrupt termination the fluid annuli in the immediate neighbourhood of the edge are
more retarded by the action of the surrounding fluid than they would have been were the disk continued and
consequently the resistance experienced by the disk in the immediate neighbourhood of its edge is actually a little
greater than that given by the formula. | have not investigated the correction due to this cause, but it would
doubtless be very small.

* Seenote A. a theend.

In the second place, the formula (15) is adapted to an indefinite succession of oscillations, whereas Coulomb
did not turn the disk through an angle greater than the largest intended to be observed, and suffer one or two
oscillations to pass before the observation commenced, but took for the initial arc that at which the disk had been
set by the hand. Probably the disk was held in this position for a short time, so that the fluid came nearly to rest. If
0, the resulting value of Ol as may readily be shewn, would be a little too small. For in the course of an indefinite
series of oscillations, the disk, in its forward motion, carries a certain quantity of fluid with it, and this fluid, in
consequence of its inertia, tends to preserve its motion. Hence, when the disk, having attained its maximum
displacement in the positive direction, begins to return, it finds the fluid moving in such a manner as to oppose its
return, and therefore it experiences a greater resistance than if it had started from the same position with the fluid
at rest. In fact, it appears from the expression for G in Art. 8, that the moment of the resistance vanishes, in
passing from negative to positive, hot when the disk has reached the end of its excursion in the positive direction,
but the eighth part of a period earlier. Hence, had the observation commenced during a series of oscillations, a
larger initial are would have been necessary, to overcome the greater resistance, in order to produce, after a given
number of oscillations, the same final are as that actually observed. | have investigated the correction to be applied
on account of this cause, and find it to be about +0.009, but | must refer to a note for the demonstration, in order
not to interrupt the present discussion*. | shall assume then, in the following comparisons, that for water

Oni = 0.0564,

the units being the same as before, namely, an English inch and a second. That O is independent of the pressure
least very nearly so, appears from an experiment of Coulomb's, in which it was found that the decrement of the arc
of oscillation of a disk oscillating in water was the same in an exhausted receiver as under the full atmospheric
pressure.

* Seenote B. at theend
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I will here mention another experiment of Coulomb's which bears directly on one part of the theory. On
covering the disk with a thin coating of tallow, the resistance was found to be the same as before; and even when
the tallow was sprinkled with powdered sandstone, by means of a sieve, the increase of resistance was barely
sensible. This strikingly confirms the correctness of the equations of condition assumed to hold good at the surface
of asolid.

66. 1 will now compare the formula (148) with the results obtained by Bessel for the oscillations of the brass
sphere in water, which will be found at page 65 of his memoir. This sphere was suspended so as to be immersed in
the water contained in a large vessel, and was swung with two different lengths of wire, the same as those
employed for the experiments in air. The times of oscillation were 1.9085 second for the long pendulum, and
1.1078 for the short, The results are

Long pendulum. | Short pendulum,
k, by 0.648 0.602
experiment
k, by theory 0.631 0.600
difference +0.017 +0.002

The depth to which the spheres were immersed is not stated, but it was probably sufficient to render the effect of
the free surface small, if not insensible. The vessel was three feet in diameter, and the water 10 inches deep, so that
unless the spheres were suspended near the bottom, which is not likely to have been the case, the effect of the
limitation of the fluid by the sides of the vessel must have been but trifling. The agreement of theory and
observation, as will be seen, is very close.

67. In the same memoir which contains the experiments on disks, Coulomb has given the results of some
experiments in which the disk immersed in the fluid was replaced by along narrow cylinder, placed with its axis
horizontal and its middle point in the prolongation of the axis of the vertical copper cylinder. In these experiments,
the arcs did not decrease in geometric progression, as would have been the case if the resistance had varied as the
velocity; but it was found that the results of observation could be satisfied by supposing the resistance to vary partly
as the first power, and partly as the square of the velocity. In Coulomb's notation, 1 : 1 - m denotes the ratio in
which the are of oscillation would be altered after one oscillation, if the part of the resistance varying as the square
of the velocity were destroyed. The several experiments performed with the same cylinder were found to be
sufficiently satisfied by the formula deduced from the above-mentioned hypothesis respecting the resistance, when
suitable numerical values were assigned to two disposable constants m and p, of which p related to the part of the
resistance varying as the square of the velocity.

Conceive the cylinder divided into elementary slices by planes perpendicular to its axis. Let r be the distance of
any slice from the middle point, g the angle between the actual and the mean positions of the axis, dF that part of
the resistance experienced by the slice which varies as the first power of the velocity. Then caculating the
resistance as if the element in question belonged to an infinite cylinder moving with the same linear velocity, we
have by the formulae of Art. 31

dF =kKMn € » where M’ = arpa’dr dé _ .49

dt ) Et_rjt'

If G be the moment of the resistance, | the whole length of the cylinder, we have, puttingn=p t™

Q= k' pa*l® d_q )
T 12r  df?
whence
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- 2kl 2l3
log.(1—my*=" 22}‘” ............... (165),

| being the moment of inertia.

Expressing | in terms of the same quantities as in the case of the disk, we get from (147) and (165)

loglo (1 - 'm’)_1 = Iogxo €.

mw TV go T .,
SN (166),

3R "W

and gr isthe weight of a cubic millimetre of water, or the 1000th part of a gramme. The numerical values of m, T,
R, W have been already given, but m must be reduced from square inches to square millimetres. The cylinders, of
which three were tried in succession, had al the same length, namely, 249 millimetres. Their circumferences,
calculated from their weights and expressed in millimetres, were 21.1, 11.2, and 0.87, and the time of four
oscillations was 92° 91° 91° The values of m calculated from these data by means of the formula (147) are
0.4332, 0.2312, and 0.01796. For the first and second of these values, m?k' may be obtained by interpolation from
the table givenin Part I. ; for the third it will be sufficient to employ the second of the formula (115).

The following are the results:

Cylinder, No. 1. No. 2. No. 3.

m, by experiment 0.0400 0.0260 0.0136
m, by theory ....... 0.0413 0.0291 0.0113
Difference—0.0013 | - 0.0031 +0.0023

The differences between the results of theory and experiment are perhaps as small as could reasonably be
expected, when it is considered that, notwithstanding the delicate nature of the experiments, the numerical values
of two constants, m and p, had to be deduced from their results.

68. This memoir of Coulomb's contains also a notice of a set of experiments with disks and cylinders in which
the water was replaced by oil. The experiments with disks shewed that with a given disk the are of oscillation
decreased in geometric progression, and that with different disks the moments of the resistances were as the fourth
powers of the diameters. The absolute resistances were greater than in the case of water in the ratio of about 17.5 to
1. The details of Coulomb's experiments on cylinders oscillating in oil are entirely omitted. It is merely stated that
on making the same cylinders as before, or shorter cylinders when the resistance was too great, oscillate in ail, it
was found, conformably with the results obtained with planes, that the coherence of oil wasto that of water as 17 to
1. The coherence is here supposed to be measured by that part of the resistance which is proportional to the first
power of the velocity. On making a rough calculation of the ratio of the resistances to cylinders oscillating in oil
and in water, on the supposition that Omi for oil is to O for water as 17.5 to 1, as would follow from the
experiments on disks if the difference of the specific gravities of the two fluids be neglected, | found that the ratio
in question ought to have been somewhere about 100 to 1, instead of only 17 to 1. It would seem from this that the
theory of the present paper is not applicable to oil; but fresh experiments would be required before this point can be
considered as established, on account of the theoretical doubt respecting the application of the formulae of Section
[11. Part ., to extremely fine cylinders, especially in casesin which O is large, so that Gm is very small. It would
be interesting to make out whether what | have called internal friction is or is not of the same nature as viscosity.
Coulomb and Dubuat apply the term viscosity to that property of water by virtue of which certain effects are
produced which have been shewn in this paper to be perfectly explicable on the theory of internal friction ; whereas
Poisson, in one of his memoirs, expressly asserts that the terms in the equations of motion which result from what
has been called in this paper internal friction belong to perfect fluids, and have nothing to do with viscosity*.
Poisson does not give the dlightest hint as to the grounds on which he rested his opinion.

* Journal de I'Ecole Polytechnique, Tom. XI11. p. 95.
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69. 1 come now to the experiments of Dubuat, which are contained in an excellent work of his entitled
Principes d'Hydraulique, of which the second edition was published in 1786. The first edition does not contain the
experiments in question. Dubuat justly remarked that the time of oscillation of a pendulum oscillating, in afluid is
greater than it would be in vacuum, not only on account of the buoyancy of the fluid, which diminishes the moving
force, but aso on account of the mass of fluid which must be regarded as accompanying the pendulum in its
motion; and even determined experimentally the mass of fluid which must be regarded as carried by the oscillating
body in the case of spheres and of several other solids. Thus Dubuat anticipated by about forty years the discovery
of Bessel; but it was not until after the appearance of Bessel's memoir that Dubuat's labours relating to the same
subject attracted attention.

Dubuat's method was as follows. Imagine a body suspended by a fine thread or wire and swung in vacuum, and
let a be the length of the pendulum, reckoned from the centre of suspension to the centre of oscillation. Now
imagine the same body swung in afluid, in which its apparent weight is p, so that if P denote the weight of fluid
displaced, the true weight of the body will be p + P. Since the moving force is diminished in the ratio of p + P to p,
if the inertia of the body were all that had to be overcome, it would be necessary to diminish the length of the
pendulum in the same ratio, in order to preserve the same time of oscillation. But since the mass in motion consists
not only of the mass of the body itself, but also of that of the fluid which it carries with it, the pendulum must be
shortened still more, in order that the time of oscillation may be unaltered. Let | be the length of the pendulum so
shortened, and n (which for the same reason as before | write instead of Dubuat's n,) a factor greater than unity,
such that p + nP isthe weight of the mass in motion; then

= =L(%_
l PP’ whence n P (l ) ......... (167).

Dubuat's experiments on this subject consist of 44 experiments on spheres oscillating in water (Tom. 11. p.
236); 31 experiments on other solids oscillating in water (p. 246); and 3 experiments on spheres oscillating in air
(p. 283). The following table contains a comparison of the formula (148) with Dubuat's results for spheres
oscillating in water. The value of Om employed in the calculation is 0.0564 inch English, or 0.05291 inch French.

Dubuat's experiments on spheres oscillating in water.

n
t calc. obs. diff.
Sphere of lead 12 | 1633 | 1.502 -.131
Diameter 1.0113 inches 1 1.687 | 1.502 -.185
Weight in water 2102 grains 2 1.766 | 1.522 -.244
3 1.825 | 1.620 -.205
Sphere of glass 2 1.602 | 1518 -.084
Diameter 2.645 inches 4 1.644 | 1.569 -.075
Weight in water 574 grains 6 1.676 | 1.598 -.078
Same sphere weighing inwater| 1 1572 | 1515 -.057
2102 grains 2 1.602 | 1516 -.086
3 1.624 | 1523 -.101
4 1.644 | 1546 -.098
Same sphere weighing inwater| 1 1572 | 1537 -.035
4204 grains 2 1.602 | 1.523 -.079
3 1624 | 1524 -.100
4 1.644 | 1538 -.106
Same sphere weighing in water| % 1551 | 1.449 -.102
9216 grains 1 1572 | 1372 -.200
2 1.602 | 1494 -.108
3 1.624 | 1494 -.130
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Sphere of wood 2 1566 | 1.507 -.059
Diameter 4.076 inches 3 1581 | 1.547 -.034
Weight in water 2102 grains 4 1.593 | 1.547 -.046
6 1.614 | 1.567 -.057
Same sphere weighing inwater| 1 1547 | 1.375 =172
4204 grains 2 1566 | 1.456 -.110
3 1581 | 1525 -.056
4 1593 | 1.557 -.036
Same sphere weighing inwater| 1/2 | 1.614 | 1.549 -.065
9216 grains 1 1547 | 157 +.023
2 1.566 | 1.553 -.013
3 1581 | 159 +.009
4 1593 | 1.583 -.010
Another sphere of wood 3 1549 | 1.27 -.279
Diameter 6 2/3 inches 4 1557 | 1.3%4 -.163
Weight in water 2102 grains 6 1570 | 1.487 -.083
9 1585 | 1.566 -.019
12 1599 | 1.569 -.030
18 1621 | 1.565 -.056
Same sphere weighing in 10.85 | 1.594 | 1.634 +.040
water 3204 grains
Same sphere weighing in water| 3 1549 | 1.651 +.102
4204 grains 4 1557 | 1.627 +.070
6 1570 | 1.654 +.084
9 1585 | 1.664 +.079
12 1599 | 1674 +.075

70. If we strike out the experiments with the large sphere, which cannot well be compared with theory for a
reason which will be explained further on, it will be observed that in seven out of the eight groups of experiments
left, the signs in the last column are regularly minus. The preponderance of negative errors could be destroyed by
using a much smaller value of O in the reduction. We have seen, however, that the value of Om deduced from
Coulomb's experiments on the decrement of the arc of oscillation of disks satisfied amost exactly Bessel's
observations of the time of oscillation of a sphere about two inches in diameter oscillating in water. The very small
errors which remained in this case had both the sign +, whereas in Dubuat's experiments on the 1-inch and 2 %>
inch spheres, the errors, which are far larger, have all the sign -. Since the experiments of Dubuat and Bessel,
though made under similar circumstances, do not lead to the same result, it is of course impossible for any theory
to satisfy them both. The numbers in the last column of the preceding table are, however, far too regular to be
attributable to mere fortuitous errors of observation. If we suppose Bessel's results to have been nearly exact, there
must have been something in the mode either of making or of reducing Dubuat's experiments which caused a
tendency to error in one direction.

With respect to the reduction of the experiments it may be observed that the length | was measured from the
centre of oscillation, whereas in the formula (148) it is supposed that the mass of which the weight is kP or
(n - 1P is collected at the centre of the sphere. If h be the distance of the centre of the sphere from the axis of
suspension, the observed value of n - | ought in strictness to be increased in the ratio of h? to I or the calculated
value diminished in the ratio of 1% to h? before comparing the results of theory and experiment. In the case of the
loaded spheres especially, the theoretical value of n would thus be a little diminished; but except in. a very few
cases, in which either | or a - | is small, the diminution is hardly worth considering After having been for a good
while at aloss to account for the regular occurrence of rather large negative errors, the following occurred to me as
the probable solution of the difficulty.
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When a pendulum oscillates in water, the arc of oscillation rapidly decreases; this rapid diminution forms in
fact the grand difficulty in experiments of this kind. In Dubuat's experiments, it will be remembered, the
suspending thread was lengthened or shortened till the time of oscillation was an exact number of seconds, or
occasionally half a second. Now, it is probable that the observer occasionally gave the suspending thread a dlight
push as the pendulum was commencing its return, in order to keep the oscillations going for a sufficient time to
allow of tolerable precision in rendering the time of oscillation equal to what it ought to be. If so, these pushes
would dightly accelerate the oscillations, and therefore cause the length of thread fixed on by observation to be a
little too great, which would make the effect of the water in retarding the oscillations appear a little too small. On
inspecting the table of differences, it may be observed that sometimes when the same sphere differently loaded is
swung in the same time as before , the numbers in the table of differences are altered more than appears to be
attributable to merely fortuitous errors of observation. This accords very well with the conjecture just mentioned,
and seems difficult to account for in any other way, inasmuch as everything relating to the fluid must have been
almost exactly the same in the two cases.

The occurrences of positive differences in the case of the large wooden sphere may be accounted for by the
limitation of the fluid mass by the sides and bottom of the vessel, and by the free surface, which, except in the case
of' very short oscillations, would have much the same effect as a rigid plane, inasmuch as it would be preserved
almost exactly horizontal by the action of gravity The vessel which contained the water was 51 inches long and 17
broad, the water was 14 inches deep, and the spheres were plunged to about 3 inches below the surface, so that the
effect of the confinement of the fluid mass would have been quite sensible in the case of such large spheres. If it be
objected that the same sphere gave negative differences in the case of the first group of experiments, it must be
observed, that when the apparent weight of so large a sphere was only 2102 French grains, the resistance would
quickly have caused the oscillations to subside if an extraneous force had not frequently been applied.

71. In Dubuat's experiments on spheres oscillating in air, the lightness of the fluid was compensated by the
extreme lightness of the spheres, which were composed, the first two of paper, and the third of goldbeater's skin. In
the following table the diameter 2a of the sphere is expressed in French inches. The value of Omi employed in the
reduction is the same as was before used in the reduction of observations made in air, namely 0.116 inch English,
or 0.1088 inch French.

Dubuat's experiments on light spheres oscillating in air.

No. 2a t n n Diff.
calc. obs.

337 4,0416 151 1.61 151 -0.10

338 6.625 1.84 1.57 1.63 +0.06

339 17.25 3.625 1.53 1.54 +0.01

The differences certainly appear very small when the delicacy of the experiments and the simplicity of the
apparatus employed are considered.

72. The only comparison yet made in this section between theory and observation in the case of pendulum
experiments, consists in comparing the observed times of vibration with the results calculated with an assumed
vaue of &M But according to theory we ought to be able, without assigning a particular value to any new
disposable constant, to calculate the rate of decrease of the are of vibration. | have not met with any experiments
made with a view of investigating the decrease in the are of vibration in the case of extremely small vibrations,
such as those employed in pendulum experiments. The experiments of Newton and others, in which the arc of
vibration was so large that the resistance depended mainly on the sguare of the velocity, would be quite useless for
my purpose. The pendulum experiments of Bessel and Baily contain however the requisite information, or at least
some portion of it, for the arcs are registered for the sake of giving the data for calculating the small reduction to
indefinitely small vibrations.

In Bessel's experiments the arc is registered for the end of equal intervals of time during the motion. The
number of such registrations in one experiment amounts in some cases to eleven, and is never less than three. So
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far the observations are just what are wanted; but there are other causes which prevent an exact comparison
between theory and experiment. In the first place the spheres were swung so close to the back of the frame that the
increase of resistance due to the confinement of the air must have been very sensible. In the second place the effect
of the wire must have been very sensible, especially in the case of the long pendulum. For the table of Section Il11.
Part 1., shews that for the wire (for which m is very small) the value of k' is much larger than that of k, whereas for
spheres of the size of those employed, when the time of oscillation is only one or two seconds, k' is a good deal
smaller than k. Hence, if the formulae of that section applied to such fine wires, the effect of the wire on the arc of
vibration would be much greater than its effect on the time of vibration, and therefore would be quite sensible. But
it has been shewn in Section 1V. that the effect of the wire in diminishing the arc of vibration is probably greater
than would be given by the formula, and therefore the uncertainty depending on the wire is likely to amount to a
very sensible fraction of the whole amount. Again, since Bessel's experiments were al made in air, no data are
afforded whereby to eliminate the portion of the observed result which was due to friction at the point of support,
imperfect elasticity of the wire, or gradual dissipation of vis viva by communication of motion to the supporting
frame. Moreover in the case of the long pendulum the observations were made with rather too large arcs, for the
law of the decrease of the arc of vibration deviated sensibly from that of a geometric progression. In Baily's
experiments, only the initial and final arcs are registered, and not even those in the case of the "additional
experiments.” Hence these experiments do not enable us to make out whether it would be sufficiently exact to
suppose the decrease to take place in geometric progression. Moreover, the final are was generally so small, that a
small error committed in the measurement of it would cause a very sensible error in the rate of decrease concluded
from the experiment. For these reasons it would be unreasonable to expect a near accordance between the formulae
and the results of the experiments of Bessel and Baily. Still, the formulae might be expected to give a result in
defect, and yet not so much in defect as not to form a large portion of the result given by observation. On this
account it will not be altogether useless to compare theory and observation with reference to the decrement of the
arc of vibration.

73. Let us first consider the case of a sphere suspended by a fine wire. Let the notation be the same as was
used in investigating the expression for the effect of the air on the time of vibration, except that the factors k', k;'
come in place of k, k;. Considering only that part of the resistance which affects the arc of vibration, we have for
the portions due respectively to the sphere and to the element of the wire whose length is ds, and distance from the
axis of suspension s,

KM@+ S kM s ne D,

and if we take the moment of the resistance, and divide by twice the moment of inertia, the coefficient of dg/dt in
the result, taken negatively, and multiplied by t, will be the index of e in the expression for the arc. Hence if a, be
theinitial arc of vibration, and a;, the arc at the end of thetimet

EM (I +a)+ YE'MT t
M(l+a)“+§Mll2 "oy ...(168),

log, a, — log,. o, =

M' (I + a)? being as before taken for the moment of inertia of the sphere, which will be abundantly accurate

enough. If then we put | for the Napierian logarithm of the ratio of the arc at the beginning to the arc at the end of
an oscillation, we must put t -t (168), whence, neglecting the effect of the wire, we obtain

If now Dk’ be the correction to be applied to k' in this formula on account of the wire, since k', k;' are combined
together in the expression for the arc just ask, k; in the expression for the time, we get
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Ak = I;cl Ak (170),
1
and the approximate formulae (115) give
AK =~ % Ak coveviiiiiiinininnnn, (171),

whence the numerical value of Dk’ is easily deduced from that of Dk which has been already calculated. We get
also from (52)

W=k—3+4k =3 corriornnnnn. (172),

whence k' may be readily deduced from Dk, which has been already cal cul ated.

74. Before comparing these formulae with Bessel's experiments, it will be proper to enquire how far the latter
are satisfied by supposing the arcs of oscillation to decrease in geometric progression. In Bessel's tables the arc is
registered in the column headed m This letter denotes the number of French lines read off on a scale placed behind
the wire, and a little above the sphere, and is reckoned from the position of instantaneous rest of the wire on one
side of the vertical to the corresponding position on the other side. The distance of the scale from the axis of
suspension being given, as well as the correction to be applied to mon account of parallax, the are of oscillation
may be readily deduced. However, for our present purpose, any quantity to which the arc is proportional will do as
well asthe are itself, and m though strictly proportional to the tangent of the arc, may be regarded as proportional
to the arc itself, inasmuch as the initial arc usually amounted to only about 50' on each side of the vertical.

Now we may form a very good judgment as to the degree of accuracy of the geometric formula by comparing
the arc observed in the middle of an experiment with the geometric mean of theinitial and final arcs. | have treated
in this way Bessel's experiments, Nos. 1, 2, .3, 4, and 5. Each of these is in fact a group of six experiments, four
with the long pendulum and two with the short, so that the whole consists of 20 experiments with the long
pendulum, and 10 with the short. In the case of the long pendulum, the observed value of mregularly fell short of
the calculated value, and that by a tolerably constant quantity. The mean difference amounted to 0.688 line, and
the mean error in this quantity to 0.109. This mean error was not due entirely to errors of observation, or variations
in the state of the air, &c., but partly also to dight variations in the initial arc, larger differences usually
accompanying larger initial arcs. The initial are usually corresponded to m= 39 or 40 lines, and the final to m= 15
or 16 lines. In the case of the short pendulum, the differencesin 8 cases out of 10 had the same sign as before. The
mean difference was 0.025, and the mean error 0.043. The arcs of oscillation were nearly the same as before; but
inasmuch as the axis of suspension was nearer to the scale than before, the initial value of mwas only about 12 or
13 lines, and the final value about 7 lines. When the results of some of the experiments were laid down on paper,
by abscissae taken proportional to the times and ordinates to the logarithms of m it was found that in the case of
the long pendulum the line so drawn was decidedly curved, the concavity being turned toward the side of the
positive ordinates. The curvature of the line belonging to the short pendulum could hardly be made out, or at least
separated from the effects of errors of observation. The experiments 9, 10, 11, having been treated numerically in
the same way as the experiments 1-5, led to much the same result. In the 16 experiments with the ivory sphere and
short pendulum contained in the experiments Nos. 12, 13, 14, and 15, the excess of the calculated over the
observed value of mwas more apparent, the mean excess amounting to 0.129. The reason of this probably was, that
the observations with the ivory sphere were made through a somewhat wider range of arc than those with the brass
sphere.

It appears then that at least in the case of the long pendulum a correction is necessary, in order to clear the
observed decrease in the are of oscillation from the effect of that part of the resistance which increases with the are
more rapidly than if it varied as the first power of the velocity, and so to reduce the observed rate of decrease to
what would have been observed in the case of indefinitely small oscillations.
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75. In Coulomb's experiments it appeared that the resistance was composed of two terms, one involving the first
power, and the other the square of the velocity. If we suppose the same law to hold good in the present case, and
denote the amplitude of oscillation at the end of the timet, measured as an angle, by a, we shall obtain

where A and B are certain constants. We must now endeavour to obtain A from the results of observation. Since the
substitution for a of a quantity proportional to a will only change the constant B in (173), and the numerical value
of this constant is not required for comparison with theory, we may substitute for a the number of lines read off on
the scale as entered in Bessel's tables in the columns headed m

| have employed four different methods to obtain A from the observed results. The one | am about to give is the
shortest of the four, and is sufficiently accurate for the purpose.

The equation (173) gives after dividing by a

dloga .,
gt = A — Ba

Now, as has been already observed, the arcs of vibration decrease nearly in geometric progression. If this law were
strictly true, we should have

where ao, denotes the initial and a, the final arc, and T denotes the whole time of observation. We may, without
committing any material error, substitute this value of a in the last term of (174). The magnitude of the error we
thus commit is not to be judged of merely by the smallness of B. The approximate expression (175) is rather to be
regarded as a well-chosen formula of interpolation, and in fact T™ loge (a a,™) differs very sensibly from A.
Making now this substitution in (174), integrating, and after integration restoring a in the last term by means of
(175), we get

BTa

loga=—Af — —— " ____
oga 4t log a, —log a,

4C .. (176),

C being an arbitrary constant. To determine the three constants A, B, C, let a; be the are observed at the middle of
the experiment, apply the last equation to the arcs ao, a1, a2, and take the first and second differences of each
member of the equation. Let D,, denote the sum of the two first differences, so that Dyt is the same thing as T. Then
we may take for the two equations to determine A and B.

BA¢t.Aa,
A loga, ’

BA¢. A'a,
A'loga, *

Alloga{,:—AAlt_ A’logao=_.

Eliminating B, and passing from Napierian to common logarithms, which will be denoted by Log., we get

_—A Loga, 1— A’ Log a,. A a,
Loge.Aft A, Log a,. A%a,
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If we suppose the part of - da/dt which does not vary as the first power of a to be a%'(a) instead of Ba® we
shall get in the same way

= - Al LOg % Al Log a, . A1¢ (ao)
4= Loge. Alt {1 - Al LOg a,. A2¢ (ao)} ...... (178)

76. | have not attempted to deduce evidence for or against the truth of equation (173) from Bessel's
experiments. The approximate formula (175) so nearly satisfied the observations, that amost any reasonable
formula of interpolation which introduced one new disposable constant would represent the experiments within the
limits of errors of observation. It may be observed, that the factor outside the brackets in equations (177) and (178)
isthe first approximate value of A got by using only the initial and final arcs, and supposing the arcs to decrease in
geometric progression. In the case of the long pendulum, the value of A, corrected in accordance with the formula

(178), would be very sensibly different according as we supposed f (a) to be equal to Ba in which case (178)
would reduce itself to (177), or equal to BaZ In the case of the long pendulum with the brass sphere, the corrected
value of A, deduced from the formula (177), was equal to about 0.77 of the first approximate value.

| have not considered it necessary to go through all Bessel's experiments, as it was not to be expected that the
formula should account for the whole observed decrement. | have only taken four experiments for each kind of
pendulum, namely, I. a, b, e, and f for the long pendulum with the brass sphere; 1. ¢ and d and Il. ¢ and d for the
short pendulum with the brass sphere; XI1I. a, b, ¢, and d for the long pendulum with the ivory sphere, and XII. &',
b' ¢', and d' for the short pendulum with the ivory sphere. The formula (177) gave the following results.

First case,
Log e. tA =-0000759; mean error = -0000020.
Second case,
Log e. tA =-0000504; mean error = '0000075.
Third case,
Log e. A =-000631 mean error = -000046.
Fourth case,

Log e. A =-000167 mean error = -000074.

Now | =t A and therefore, to get the values of | deduced from experiment, it will be sufficient to divide the
numbers above given by the modulus of the common system of logarithms. The theoretical value of | will be got
from (169), if we add to k' the correction Dk' depending upon the wire. The following are the results:

long p, short p. long p. short p
brasss. | brasss. ivory s. ivory s.
1000000 1 for sphere alonein
an unlimited mass of fluid,
by theory ... 67 50 298 222
additional for wire 27 9 114 39
94 59 412 261
1000000 I by experiment 175 116 1453 384

It appears then that the calculated rate of decrease of the arc amounts on the average to about half the rate
deduced from observation. This is about what we might have expected, considering the various circumstances, all
tending materially to augment the rate of decrease, which were not taken into account in the calculation.
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77. Of Baily's pendulums | have compared the following with theory in regard to the decrement of the arc of
vibration. No. 1 (the 1 1/2-inch platina sphere), experiments 1 to 8 ; No. 3 (the brass 1 1/2-inch sphere),
experiments 9 to 16 ; No. 6 (the 2-inch brass sphere), experiments 33 to 40; No. 21 (the 0.410 inch long copper
cylindrical rod), experiments 109 to 112; and Nos. 35-38 (the 1 1/2-inch long brass tube), experiments 167 to 174.
1 have not thought it worth while to compute the results obtained with the other 1 1/2-inch and 2-inch spheres,
inasmuch as they were of the same size as the brass spheres, and moreover the observation of the decrement of the
are was not the object Baily had in view in making the experiments. The 3-inch sphere, and al the other
cylindrical rods and combinations of cylindrical rods and spheres, belong to the "additional experiments' for which
the arcs are not given.

The mode of performing the calculation will best be explained by an example. Take, for instance, the pair of
experiments Nos. 1 and 2. In No. 1. the total interval was 4.22 hours, the initial arc was 0°.77 the final arc 0°.29,
the mean height of the barometer 30.24 inches, and the temperature about 38 1/2° F. The difference of the common
logarithms of theinitial and final arcsis 0.424, and this divided by the total interval gives 0.1005 for the difference
of logarithms for one hour. The second experiment, treated in a similar way, gives 0.0352, which expresses the
effect of friction at the point of support, communication of motion to the support itself, &c., together with the
resistance of highly rarefied air at a pressure of only 0.97 inch of mercury. Since we have reason to believe that m
is independent of the density, we may get the effect of air at a pressure of 30.24 — 0.97 or 29.27 inches of mercury
by subtracting 0.0352 from 0.1005, which gives 0.0653. Reducing to 29 inches of mercury for convenience of
comparison, we get 0.0649. Each pair of experiments is to be treated in the same way. Since the temperature was
nearly the same in the experiments made with the same pendulum, we may suppose it constant, and equal to the
mean of the temperatures in the experiments made under the full atmospheric pressure. The experiments reduced
consist of four pair for each pendulum, except No. 21, for which only two pair were performed. The following are
the results. For the 1 1/2-inch platina sphere 0.0644, mean error 0.0044. For the 1 1/2-inch brass sphere 0.180,
mean error 0.024. For the 2-inch brass sphere 0.094, mean error 0.013. For the copper rod 0.486, mean error
0.113. For the brass tube the results were 0.145, 0.363, 0.338, 0.305. Rejecting the first result as anomalous, and
taking the mean of the others, we get 0.335, mean error 0.030. To obtain | from the mean results above given we
have only to divide by 3600 times the modulus, and multiply by t and for the experiments with spheres we may
supposet = 1.

The mode of calculating | from theory in the case of a sphere suspended by a fine wire has already been
explained. For the sake of exhibiting separately the effect of the wire, |1 will give one intermediate step in the
calculation.

1.44 inch|1.46 inch|2.06 inch
sphere. | sphere. | sphere.
k', for sphere alone 0.326 0.320 0.220
Dk’, the correction for the wire 0.130 0.130 0.045
Total, to be substituted in (169) 0.456 0.450 0.265

The formula (168), which applies to a sphere suspended by a wire, will be applicable to along cylindrical rod if
we suppose M = 0. Hence the same formula (169) that has been used for a sphere may be applied to a cylindrical
rod if we suppose k' to refer to the rod. For the copper rod k' = 1.107, and for the tube k' = 0.2561. The following
are the results for the three spheres and two cylinders.

Nos.
No No. No. No. 35-
.1 3. 6. 21. 38.
1000000 I, from experiment| 41 115 60 315 206
............ from theory 39 106 60 237 156
Difference +2 +9 0 +78 +50
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It appears that the experiments with spheres are satisfied almost exactly. The differences between the results of
theory and observation are much larger in the case of the long cylinders. Large as these differences appear, they are
hardly beyond the limits of errors of observation, though they would probably be far beyond the limits of errors of
observation in a set of experiments performed on purpose to investigate the decrement of the are of vibration. It
was to be expected beforehand that the results of calculation would fall short of those of observation, inasmuch as
only two arcs were registered in each experiment, so that no data were afforded for eliminating the effect of that
part of the resistance which did not vary as the first power of the velocity.

78. 1 have now finished the comparison between theory and experiment, but before concluding this Section |
will make afew general remarks.

When a new theory is started, it is proper to enquire how far the theory does violence to the notions previously
entertained on the subject. The present theory can hardly be called new, because the partial differential equations of
motion were given nearly thirty years ago by Navier, and have since been obtained, on different principles, by other
mathematicians; but the application of the theory to actual experiment, except in some doubtful cases relating to
the discharge of liquids through capillary tubes, and the determination of the numerical value of the constant m
are, | believe, altogether new. Let us then, in the first instance, examine the magnitude of the tangential pressure
which we are obliged by theory to suppose capable of existing in air or water.

For the sake of clear ideas, conceive a mass of air or water to be moving in horizontal layers, in such a manner
that each layer moves uniformly in a given horizontal direction, while the velocity increases, in going upwards, at
the rate of one inch per second for each inch of ascent. Then the dliding in the direction of a horizontal plane is
equal to unity, and therefore the tangential pressure referred to a unit of surface is equal to mor u'r. The absolute
magnitude of this unit sliding evidently depends only on the arbitrary unit of time, which is here supposed to be a
second. In the case supposed, it will be easily seen that the particles situated at one instant in a vertical line are
situated at the expiration of one second in a straight line inclined at an angle of 45° to the horizon. Equating the
tangential pressure mir to the normal pressure due to a height h of the fluid, we get h = g™* n¥", g being the force of
gravity. Putting now g = 386, m = (0.116) for air, m = (0.0564)? for water, we get h = 0.00003486 inch for air,
and h = 0.000008241 inch for water, or about the one thirty-thousandth part of an inch for air, and less than the
one hundred-thousandth part of an inch for water. If we enquire what must be the side of a square in order that the
total tangential pressure on a horizontal surface equal to that square may amount to one grain, supposing the
density of air to be to that of water as 1 to 836, and the weight of a cubic inch of water to be 252.6 grains, we get
25 feet 8 inches for air, and 1 foot 10 inches for water. It is plain that the effect of such small forces may well be
insignificant in most cases.

79. In aformer paper | investigated the effect of internal friction on the propagation of sound, taking the simple
case of an indefinite succession of plane waves*. It appeared that the effect consisted partly in a gradual subsidence
of the motion, and partly in a diminution of the velocity of propagation, both effects being greater for short waves
than for long. The second effect, as | there remarked, would be contrary to the result of an experiment of M. Biot's,
unless we supposed the term expressing this effect to be so small that it might be disregarded. | am now prepared
to calculate the numerical value of the term in question, and so decide whether the theory is or is not at variance
with the result of M. Biot's experiment.

According to the expression given in the paper just mentioned, we have for the proportionate diminution in the
velocity of propagation
877'2/.4.'2
DS

| being the length of awave, and V the velocity of sound. To take a case as disadvantageous as possible, suppose |

only equal to one inch, which would correspond to a note too shrill to be audible to human ears. Taking, the
velocity of sound in air at 1000 feet per second, there results for the common logarithm of the expression above
written bar 11.0428, so that a wave would have to travel near 100000000000 inches, or about 1578000 miles,
before the retardation due to friction amounted to one foot. It is plain that the introduction of internal friction
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leaves the theory of sound just as it was, so far as the velocity of propagation is concerned, at least if the sound be
propagated in free air.

* Camb. Phil. Trans. Vol. VIII. P. 302. [Ante, Val. p. 101]

The effect of friction on the intensity of sound depends on the first power of m. In the case of an indefinite
succession of plane waves, it appears that during the time t the amplitude of vibration is diminished in the ratio of
1 to e® and therefore the intensity in the ratio of 1 to e ** where

'

Puttingl =1 andt=1we get 1 to 0.4923, or 2 to 1 nearly, for the ratio in which the intensity is atered during
one second in the case of a series of waves an inch long. The rate of diminution decreases very rapidly as the
length of wave increases, so that in the case of a series of waves one foot long the intensity is altered in one second
in the ratio of 1 to 0.995095, or 201 to 200 nearly. It appears then that in all ordinary cases the diminution of
intensity due to friction may be neglected in comparison with the diminution due to divergence. If we had any
accurate mode of measuring the intensity of sound it might perhaps be just possible, in the case of shrill sounds, to
detect the effect of internal friction in causing a more rapid diminution of intensity than would correspond to the
increase of distance from the centre of divergence.

SECTION 1.

Suggestions with reference to future experiments.

80. I am well aware that the mere proposal of experiments does not generally form a subject fit to be brought
before the notice of a scientific society. Nevertheless, as it frequently happens in the division of labour that one
person attends more to the theoretical, another to the experimental investigation of some branch of science, it is not
always useless for the theorist to point out the nature of tile information which it would be most important to obtain
from experiment. | hope, therefore, that | may be permitted to offer a few hints with reference to experiments in
which the theory of the internal friction of fluids is concerned. | shall omit all details, since they would properly
come in connexion with the experiments.

Experiments with which the theory of internal friction in fluids has more or less to do may be performed for
either of the following objects : first, to test still further the truth of the theory ; secondly, to determine the index of
friction of' various gases, liquids, or solutions; to investigate the dependance of the index of friction of a gas on its
state of pressure, temperature, and moisture; or to endeavour to make out the law according to which the index of
friction of a mixture of gases depends upon the indices of friction of the separate gases; thirdly, to measure the
length of the seconds' pendulum, or its variation from one part of the earth's surface to another.

81. First object. The theory has been already put to a pretty severe test by means of the experiments of Baily
and others. Nevertheless there are some uncertainties in the comparison of theory and experiment arising from the
influence of modifying causes of which the effect could only be estimated from theory, and yet was not so small as
to be merged in errors of observation. Moreover, experiments on the decrement of the are of vibration are amost
wholly wanting. The following system of pendulums, meant to be swung in air and in vacuum, would afford a very
good test of the theory.

No. 1. A 2-inch or 1 1/2-inch sphere swung with afine wire.

No. 2. A very small sphere swung with the same kind of wire.

No. 3. A long cylindrical rod, afew tenths of an inch in diameter.
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No. 4. A cylinder only three or four inches long, of the same diameter as No. 3, swung with the same kind of
wireas No. 1.

The vacuum tube ought to be of sufficient size to render the estimated correction for confined space less than,
or at most comparable with, errors of observation. The vacuum apparatus used by Col. Sabine would do very well.
If the vacuum tube be not of sufficient size, it ought to admit of removal, and to be removed when the pendulums
areswung in air.

In al the experiments the arc of oscillation ought to be carefully observed several times during the motion, the
observation of the arc being quite as important for the purposes of theory as the observation of the time. Indeed, if
it should be inconvenient to observe the time, the observation merely of the arc would be very valuable as a test of
theory. In that case an approximate value of the time of oscillation in air would be required.

In the system proposed, Nos. 1 and 3 are the principal pendulums, Nos. 2 and 4 are introduced for the sake of
making certain small corrections to the results of Nos. 1 and 3. No. 2 is meant for the elimination from No. 1 of the
effect of the wire, and No. 4 for the elimination from No. 3 of the effect of the resistance experienced by a small
portion of the rod near its end. The times of vibration of the four pendulums ought to be nearly the same, although
for that purpose slightly different lengths of wire would be required in Nos. 1, 2, and 4.

It follows from theory that for a given pendulum the factor n  is a function of the time of vibration. Thisis a
result which seems to have been hardly so much as suspected by those who were engaged in pendulum
experiments, or at most to have been mentioned as a mere possibility*, and therefore it might be thought advisable
to verify it by direct experiment. For my own part | regard it as so intimately connected with the fundamental
principles of the theory, that if the theory be confirmed in other respects 1 think this result may be accepted on the
strength of theory alone. The direct comparison with experiment would be inconvenient, because it would require a
clock which kept excellent time, and yet admitted of being adjusted so as to make widely different numbers of
vibrations in a day. The result could, however, be confirmed indirectly by observing the are of vibration, an
observation which is as easy with one time of vibration as with another.

* |t should be observed however that in a subsequent memoir (Astronomische Nachrichten, No. 223, p. 106) Bessel deduced from other experiments
that the value of k waslarger for the long than for the short pendulum.

82. Second object. According to theory, the index of friction may be deduced from experiments either on the
are or on the time of vibration. It must be left to observation to decide which give the more consistent results.
Should the results obtained from the arc appear as trustworthy as those obtained from the time, it would apparently
be much the easiest way of determining m for an elastic fluid to observe the arc, because no particular accuracy
would then be required in the observation of time. As to the form of the pendulum, a cylindrical rod would
apparently be the best if only a single pendulum were employed. The observation of the arc seems the only
practicable way of determining the influence of temperature on the index of friction, unless the pendulum be
extremely light, or unless the observer be content with the limited range of temperature which may be procured by
making observations at different times of year, For in an apparatus artificially heated or cooled, it would be
difficult to prevent small unknown variations of temperature, which would cause variations in the rate of vibration,
in consequence of the expansion and contraction of the pendulum ; and these variations would vitiate the result of
the experiment, so far as the time of vibration is concerned, because the effect of the gas on the time of vibration is
deduced from the small difference between two large quantities which are directly observed. But the effect of the
gas on the arc of vibration produces by far the greater part of the whole diminution observed, and therefore small
fluctuations of temperature would not be of much consequence, except so far as they might occasion gentle
currents; and even then would not be very important, because the forces thence arising would not be periodic, and
dependent upon the phase of vibration of the pendulum.

The grand difficulty which besets the observation of the time of vibration of a pendulum oscillating in a liquid
consists in the rapidity with which the oscillations subside. The best form of a pendulum to oscillate in a liquid
would be a sphere suspended by a fine wire. The vessel containing the liquid and the sphere immersed in it ought
to be so large as to render the correction for confined space insensible. But the index of friction of a liquid would
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probably be better determined by experiments more of the nature of those of Coulomb, or perhaps by the slow
discharge of liquids through narrow tubes.

Among the gases for which nmi ought to be determined experimentally should be mentioned coal-gas, on account
of the practical application which it appears possible to make of the result to the laying down of gas-pipes. The
calculation of the resistance in a circular pipe is very simple, and is given in Art. 9 of my former paper. According
to the equations of condition assumed in the present paper we must put U = 0, U denoting in that article the
velocity close to the surface. It appears that the pressure spent in overcoming friction varies as the mean velocity
divided by the sguare of the diameter of the pipe, or as the rate of supply divided by the fourth power of the
diameter. This goes on the supposition that the motion is sufficiently slow to alow of our neglecting the pressure
which may be spent in producing eddies, in comparison with that spent in overcoming what really constitutes
internal friction.

83. Third object. With respect to experiments for determining the length of the seconds pendulum, the theory
of internal friction rather enables us to calculate for certain forms of pendulum the correction due to the inertia of
the air than points out any particular mode of performing the experiments. Even the ordinary theory of
hydrodynamics points out the importance of removing all obstacles to the free motion of the air in the
neighbourhood of the pendulum if we would calculate from theory the whole correction for reduction to a vacuum.

Since the theoretical solution has been obtained in the case of along cylindrical rod, or of such arod combined
with a sphere, we may regard a pendulum formed in this manner and which is convertible in air, as also
convertible in vacuum, for it is of small consequence whether the pendulum be or be not realy convertible in
vacuum, provided that if it be not we know the correction to be applied in consequence.

Note A, Article 65.

Let us apply the genera equations (2), (3) to the fluid surrounding a solid of revolution which turns about its
axis, with either a uniform or a variable motion, supposing the fluid to have been initially either at rest, or moving
in annuli about the axis of symmetry.

In the first place we may observe, that the fluid will always move in annuli about the axis of symmetry. For let
P be any point of space, and L any line passing through P, and lying in a plane drawn through P and through the
axis of symmetry ; and at the end of the time t let m be the velocity at P resolved along L. Now consider a second
case of motion, differing from the first in having the angular velocity of the solid and the initial velocity of the
fluid reversed, everything else being the same as before. It follows from symmetry, that at the end of the timet the
velocity at P resolved along L will be equal to u’, since the motion of the solid and the initial motion of the fluid,
which form the data of the one problem, differ from the corresponding quantities in the other problem only as
regards the distinction between one way round and the other way round, which has no relation to the distinction
between to and fro in the direction of aline lying in a plane passing, through the axis of rotation. But since all our
equations are linear as regards the velocity, it follows that in the second problem the velocity will be the same asin
the first, with a contrary sign, and therefore the velocity at P in the direction of the line L will be equal to -u'.
Hence u' = -u', and therefore u' =0, and therefore the whole motion takes place in annuli about the axis of rotation.

Let the axis of rotation be taken for the axis of z; let w be the angle which a plane passing through this axis and
through the point P makes with the plane of xy, and let v' be the velocity at P. Then

u=—7"snw, v=17"cos w, w=0,

and all the unknown quantities of the problem are functions of t, z, and v where v = (x* + y?). Substituting in
equations (2) the above values of u, v, and w, and after differentiation putting w= 0, as we are at liberty to do, we
get
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p_o W_
da 0, dz — 0,
(B v Loy v
F\dr Tde* T wde &) P dt
The first two of these equations give p = a constant, or rather p = a function of t, which for the same reason asin
Art. 7 we have aright to suppose to be equal to zero. The third equation combined with the equations of condition
serves to determine v’.

Now in the particular case of an oscillating disk, the equation (179) becomes according to the mode of
approximation adopted in Art. 8
e _
M a2 =p dp e

which in fact is the same as the second of the equations (8). The solution thus obtained is as we have seen

V= (2,8) ceiiiiineneniiniinnnnn, (181),

f denoting a function the form of which there is no need to write down, which satisfies (180) when written for v'.
Now it will be seen at once that the expression (181) satisfies the exact equation (179), and therefore the
approximate solution obtained by the method of Art. 8 isin fact exact, except so far as regards the termination of
the disk at its edge, which iswhat it was required to prove.

Passing from semi-polar to polar co-ordinates, by putting z = r cos g, v = r sin g, we get from (179), after
writing mir for m
v 2dy 1 dy/. ,dv v 1 dv
dr? +; dr + r*sin @ d@ (sm 0 d—9> T r*sin’ @ =;7 dt --(182).

Suppose now the solid to be a sphere, having its centre at the origin. Let a beitsradius, 8 its angular velocity,
and suppose the fluid initially at rest. Then v' is to be determined from the general equation (182) and the
equations of condition

v=0whent=0, v =aysinfwhenr=a, 4 =0 whenr=0w.

All these equations are satisfied by supposing
v =" sin 9,

V" being afunction of r and t only. We get from (182)

v’ 2dv” 2 1 dv’
e & (183).

If we suppose ¥ constant, v* will tend indefinitely to become constant as t increases indefinitely, and in the
limit dv”’/dt = 0, whence we get from (183) and the equations of condition v"' =a 8 whenr =a, v" =0whenr =
¥ )

8

8
RO . wa® .
v =" ¥ == gin 4.
™’ 7

Thisisthe solution alluded to in Art. 8 of my paper On the Theories of the Internal Friction of Fluids in
motion, &c.
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NOTE B, Article 65.

Let us resume the problem of Art. 7, but instead of the motion of the plane being periodic, let us suppose that
the plane and fluid are initialy at rest, and that the plane is then moved with a constant velocity V, and let the
notation be the same asin Art. 7.

The general equations (8) remain the same as before, but the equations of condition become in this case

v=0 when t=0 from =0 to =0,
="V when 2=0 from t=0 to t=c.

By Fourier's theorem and another theorem of the same kind, v may be expanded between the limits 0 and ¥ of x
in the following form:

v = 2 fw Jw cos ax cos ax’ ¢ (2, t) da'da
0

+ ?T fm fm sin az sin az'y (2, t) do'da...... (184).
0 J0

In fact, v could be expanded by means of either of these expressions separately, and of course can be expanded in
an infinite number of ways by the sum of the two. If however v had been expanded by means of the first expression
alone, its derivatives with respect to x could not have been obtained by differentiating under the integral signs,
inasmuch as the derivatives of an odd order do not vanish when x = 0, but would have been given by certain
formulae which | have investigated in a former paper*. A similar remark applies to the second expansion, in
consequence of the circumstance that v itself and its derivatives of an even order do not vanish with x. But by
combining the two expansions we may obtain the derivatives of v, up to any order i that we please to fix on, by
merely differentiating under the integral signs. For we may evidently express the finite function v, and that in an
infinite number of ways, as the sum of two finite functionsf (x, t), y (x, t) which like v vanish when x = ¥, and
which are such that the odd derivatives of the first, and the even derivatives of the second, up to the order i, as well
asy (x, t) itself, vanish when x = 0. Substituting now in the second equation (8) the expression for v given by
(184), we see that the equation is satisfied provided

d , d ' o
£+ua2¢=0, H\’g‘*‘#“‘I’:O'

* On the critical values of the sums of periodic series. Camb. Phil. Trans., Vol. VIII. p. 533. [Ante, Vol. I. p. 287.]

These equations give
¢, )=x@)e ¥, (@, )=a(@)e™,

where c, s denote two new arbitrary functions. Substituting in (184), and then passing to the first of the equations
of condition, we get

0=y (2)+0o(2),
whence s (x) = -c (x) and

v=£f J- cos & (& + ') e <y (2') da' da
™Jo Jo

1 ® @t
—= f € 4t X (.’,U ) dw ......... (185).
wat

0

The second of the equations of condition requires that
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1 o g e .
v L ["ein 'd'=——f ~# 5, (25 VT) ds.
\/7rp/to€ Wiy (2) da Tl x (2s Vu't) ds

Since the second member of this equation must be independent of t, we get ¢ = a constant, and this constant must
be equal to V, since
2

%J’OE d8=].

Substituting in (185) we get

14 © _(@tz)?
K
S0

V= = wi Ao e 186).
Vru't * (186)

For the object of the present investigation nothing is required but the value of dv/dx for x = 0, which we may
denote by (dvdx),. We get from (186)

(2%)0’_‘ _ \/_}%2 ..................... (187).

Now suppose the plane to be moved in any manner, so that its velocity at the end of thetimet is equal to f (t). We
may evidently obtain the result for this case by writing f * (t') dt’ for V, and t - t' for t in (187), and integrating with
respect to t'. We thus get

(Z_Z)c)o= - _;17; [ ‘_w @) ﬁ‘@f - Ji—; f:f (t—1) % ...(188).

To apply this result to the case of an oscillating disk, let r dq /dt = rF(t) be the velocity of any annulus, and G the
moment of the whole force of the fluid on the disk. Then

G=dmu'p f . r® (%)c’d’r ;

and (dv/dx) o will be got from (188) by substituting rF(t) for f (t). We find thus

G=—Jmu . pa‘fF’(t—tl) LS
0 Vi,

If we suppose the angular velocity of the disk to be expressed by A sin nt, where A is constant, we must put F (t)
=A sin nt in (189), and we should then get after integration the same expression for G as was obtained in Art. 8 by
a much simpler process. Suppose, however, that previously to the epoch from which t is measured the disk was at
rest, and that the subsequent angular velocity is expressed by A; sin nt, where A is a dowly varying function of t.
Then F(t) =0whent <0, F(t) =A;sinntwhent>0.

On substituting in (189) we get
—_— 1
=—Jmu . pa‘n/ Ay _y cosn(t—1,) o (190).
0 '\/tl

Now treating A; as a owly varying parameter, we get from a formula given by Mr Airy, and obtained by the
method of the variation of parameters,
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dd, @ .
W—t= TSR (191),

where | denotes the moment of inertia. In the expression for G we may replace Ay, under the integral sign by A
outside it, because A; is supposed to vary so dowly that A:.;, does not much differ from A, while t; is small enough
to render the integral of importance. Making this simplification and substituting in (191) we get

dA,

. t dt
—— = — ¢ t—1t) 2 eeenens 192),
Ad csinn jocos n(t—1t) 7 (192)

wherec = Qpm) xr a*nl™. If then A be the initial and A the final value of A;, we get from (192)
’ ¢
log ijf - cfo {sin ntfocos n(t—1,) %} dt ...(193).

Let now Ag+ DA, be what Ag would become if, while the final arc A and the whole time t remained the same,
the motion had been going on for an indefinite time before the epoch from which t is measured, in which case the
superior limit in the integral involved in the expression for G would have been ¥ in place of t. Then

4,4+ A4 i, © dt,
log —A__" = cfo {sm ntfo cosn (t—t) V’Z} de...(194),

whence by subtracting, member from member, equation (193) from equation (194), we get

¢
log A"_Z?A":cfo{sinntfcosn (t —tl)%} dt,

7

which becomes after integration by parts

4d,+ A4,
O —

¢ s . dt
log i _‘Tn{&/h—ﬁ—-2\/t.cosnt—cos2ntftcosnt:/-i

+ (20t — sin 2nt) f sin nt flf} ...... (195).
¢ Vi

Now t is supposed to be very large: in Coulomb's experimentsin fact 10 oscillations were observed , so that nt = 10
p . But whentisat al large the two integrals

facos'ntglE fwsinntﬂ
¢ vt’ ¢ At

can be expressed under the forms
— P sin nt + Q cosnt, P cos nt + Q sin nt,

where
P=n"t"%-1.3.2%n3¢t ¥4 ..,
Q=1.2"n"¢%-1.8.5.27n¢t %4 ...,

series which are at first rapidly convergent, and which enable us to calculate the numerical values of the integrals
with extreme facility. These expressions were first given by M. Cauchy, in the case of Fresnel's integrals, to which
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the integrals just written are equivalent. They may readily be obtained by integration by parts, though it is not thus
that they were demonstrated by M. Cauchy. If now the above expressions be substituted for the integrals in (195)
the terms containing tY? destroy each other, and for general values of t the most important term after the first
contains 2 Since however t is supposed to correspond to the end of an oscillation, so that nt is a multiple of p the
coefficient of this term vanishes, and the most important term that actually remains contains only t32 Hence
neglecting insensible quantities we get from (195)

Aotddy e fm (196).

log A, TdnV 2n

We get from (194) by performing the integrations

ot
ﬁ%ﬁ’=c \/%; /Osin nt (cos nt + sin nt) dt

log
= fn N/%rﬁ {2nt + 1 — cos 2nt — sin 2nt},

which becomes since nt isamultiple of p

A, +D4, ¢ T
log 4 " \/% 208..nennn e (197).
We get from (196) and (197)
4,+484, , A, +A4, UA(,+AAO 4,
2nt log y log q =log A + log 1’
whence
AO + A.Ao _ - Ao
log A =(2nt —1)log 7 BRCRRTE (198),

0

and the same relation exists between the common logarithms of the arcs, which are proportional to the Napierian
logarithms. Now Log Aq - Log A is the quantity immediately deduced from experiment, and Log (Aq+ DAg) - Log
Aq is the correction to be applied, in consequence of the circumstance that the motion began from rest. Instead of
applying the proportionate correction +(2nt - 1)™ to the difference of the logarithms, we may apply it to the
deduced value of which is proportional to the difference of the logarithms. In Coulomb's experiments 10
oscillations were observed, and therefore 2nt = 20p and (2nt - 1)™ = 0.01617, and the uncorrected value of O
being 0.0555, we get 0.0009 for the correction, giving Om = 0.0564.

NOTE C. Article 50.

The results mentioned in this article were originally given without demonstration ; but as the mode in which
they were obtained is short, and by no means obvious, | have thought it advisable to add the demonstrations.

In order that the right-hand members of equations (138) may be perfect differentials, we must have
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dé | de” dé  do' ds  de’

T =0, ¢E+dy_=0’ ot a7 =0
Zlii_ ‘%“;;; 0, %—‘%’i; 0, %—‘fi‘:/ —0...(b),
%".;./’.'Jriol"f;:o, %“’z;"+%";-'=o, %+%=0...(c).
The equations (c) give
‘2“; =0, do‘l‘;_—.o, %:0 ............ (d).

In the particular case in which d = 0, the equations (a), (b), and (d) give
do' =0, do'’ =0, de'' =0,

and therefore w, w", and w" are constant as stated in Art. 50. In the general case the equations (a), (b), and (d)
give for the differentials of w/, w"', and w" the following expressions:

.45, . d
de ——jzdy+@dz,
L, b, . db
d&) ——d—de'l" di dx, ............... (e).
" dd dé

In order that the right-hand members of these equations may be perfect differentials, we must have

agjgfo’ d%f’ d_iigfo ...... f),
%‘Z+%§=O, g—:f 3%82=0, %§+§y§2=0,
and therefore
o, %i=o, S S S )
The equations (f), (g) give
a® o, d%=0, %o,
so that
dd dd dd
T 3y and =~

are constant. Substituting in (€) and integrating, and then substituting in (138) the resulting expressions for w/, w",
and w"', and integrating again, we shall obtain the results given in Art. 50.

[The possibility of a more general kind of motion than that of a solid taking place in an elastic fluid without
consumption of energy by internal friction, that is, without its being converted into the kinetic energy of heat,
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depends on the coefficient in the last term of (1) being m3, or rather not greater than m3; and that again on the
assumption made in aformer paper (Vol. I. p. 87) that in any elementary portion of the fluid a velocity of dilatation
alike in all directions does not affect the hydrostatical relation between the pressure and density. Although | have
shown (Val. I., p. 119) that on the admission of a supposition which Poisson. would probably have allowed the two
constants in his equations of motion are reduced to one, and the equations take the form (1), and although Maxwell
obtained the same equations from his kinetic theory of gases (Philosophical Transactions for 1867, p. 81) | have
always felt that the correctness of the value mi3 for the coefficient of the last term in (1) does not rest on as firm a
basis as the correctness of the equations of motion of an incompressible fluid, for which the last term does not
come in at al. If the supposition made above be not admitted, we must replace the coefficient m3 by a different
coefficient, which may be written mi3 + v and v must be positive, as otherwise the mere alternate expansion and
contraction, alike in al directions, of afluid, instead of demanding the exertion of work upon it, would cause it to
give out work. But if the positive constant exists, the coefficient of the squared velocity of dilatation in the
transformed expression for DV in p. 43, instead of being 2/3 m will be -2/3 m + v and in order that the quantity
under the sign of triple integration may vanish, we must have in addition to the equations (137) on p. 44 the
further equation d = O, and the conclusion is the same as in the case of an incompressible fluid.]

ADDITIONAL NOTE. (See foot-note at p. 48.)

[The fact that notwithstanding the great variety in the forms of Baily's pendulums, even when restricted to
those to which the theory of the present paper is applicable, the results of his experiments manifest such a
remarkable agreement with theory, in spite of the adoption in the calculation of alaw as to the relation of mto r
which we now know to be wrong, paradoxical as that fact appears at first sight, admits of being easily explained by
combining two considerations, relating the one to the way in which the experiments were conducted, the other to
the character of the formulae.

In the case of the 41 pendulums mentioned in Baily's paper as originally presented to the Royal Society, the
high pressure under which each pendulum was swung was always the atmospheric pressure, and the low pressure
did not much differ from that of 1 inch of mercury. There can be little doubt that the same practice was followed as
regards the 45 additional pendulums for which the reduced results only, not the details, are given in the appendix.
Hence the two pressures used would be nearly the same throughout, and nearly those measured by 30 inches and 1
inch of mercury. The ratio of the densities would be very nearly the same.

The expression (52) shows that for a sphere k is of the form

where A is an abstract number, and B depends on the diameter and time of vibration of the sphere, but is constant
when only the nature and the density of the gas are changed. In the case of along cylinder, the expression for k is
complicated, and involves infinite series. Nevertheless the numerical table on p. 52 shows that if we except the very
early part of the table, which corresponds to very slender rods, or (according to Maxwell's law) to very low
pressures, the value of k nearly fits an expression of the form (a), A being in this case 1, instead of 1/2 which was
its value for a sphere, and B depending, as it did before, on the diameter and time of vibration. And if the
pendulum be made up of a sphere and a cylindrical rod, as was the case with many of Baily's we shall still not go
far wrong if we take k to be expressed in the same form (a), in which the constants A and B admit of being
obtained by calculation. Now by the definition of k the effect of the air on the time of vibration of a given pendulum
varies as (1 + k)r. Baily'sn, or 1 + k, was got by dividing the observed difference in the time of vibration at the
high and low pressure, corrected for everything but the effect of the air, by the calculated difference for buoyancy
alone.

Hencen =1 + Dkr / Dr, where A denotes the difference at the high and low pressures. If we assumek to be
given nearly enough by the formula (a), we have
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A 7
n=1+A+B—’Z/i-
p

If we put BC for n- 1 - A, we have according to the. assumed law Omi = C, and therefore if we denote the
higher and lower densities by r 4, r o, we have at the atmospheric density

’\//" = 0’\/Pl’
which gives what mis supposed to be. But we ought to have taken

A

so that if we denote the apparent coefficient by 'm reserving mfor the true coefficient, we have

\/Iﬁ= Dp  _ PP =1+«/&,_
‘u e BVp  Np,(Wp—Npo) P

Now in the same experiment the swings at high and low pressure were taken at temperatures that did not much
differ ; and indeed Baily arranged the order of the swings in such a manner as to eliminate the effect of a small
progressive change. We may therefore take the ratio of the densities as being that of the pressures, which, as
already stated, was nearly that of 30 to 1. Hence the values of mwhich would be deduced independently from the
different experiments on the supposition that i and not mwas independent of the density would all be wrong in
nearly the same ratio, which would be nearly that of ($80 + 1) to 30. This accounts for the remarkable agreement
between theory and experiment as regards the time of vibration, notwithstanding the employment of an erroneous
law as to the relation between mand r in making the correction for the residual air at the low pressure. Moreover,
in order to arrive at the value of mwhich would have been deduced from the experiments on the time of vibration
had they been reduced according to Maxwell's law, we have merely to increase the value as obtained in this paper
in aratio which is nearly that given above, or 1 to 1.398. The mean high and low pressures for the four 1 1/2-inch
spheres were 30.062 and 1.177, numbers which would give for the factor 1.558. Of the three pendulums in the
table on p. 79, from which the adopted value of Om was deduced, the first is the only one for which the pressures
are recorded in Baily's paper, and the calculated factor for it is 1.437.

The results of the most recent and trustworthy experiments for the determination of mfor air are brought
together by Mr H. Tomlinson in a paper published in the Philosophical Transactions for 1886, p. 767. From the
numbers given by him on p. 768 (first line in the table), and on pp. 784, 785, it appears that the true factor should
be about 1.700. It is Omthat enters into the expression for the time of vibration, and the difference between the
square roots of 1.7 and 1.4 is only .0925 of the former ; and it is only a portion of the correction for inertia in
which the viscosity is involved at al. Thus in the case of the 1 1/2-inch spheres (see p. 53), that part of the
correction for the air in which alone the viscosity is involved is little more than the one-seventh of the whole; and a
fraction of this again which is barely one-tenth would amount to little more than one per cent. of the whole effect
of the air. Considering the uncertainties as to some small corrections, such as that for the effect of the confinement
of the space in which the pendulums were swung, the resistance to the wire in the case of the spheres, the deviation
of the motion of the air near the bottom of long cylindrical rods from a motion in two dimensions in a horizontal
plane, such small discrepancies as that just noticed can hardly be affirmed to be real, that is, such as would emerge
from mere casua errors of observation if the above corrections were made perfectly. It is however possible that
with amplitudes of vibration as large as those actually used, amounting to about 1° to start with, there may have
been a very dight production of eddies, the effect of which on the time of vibration may not have been wholly
insensible.

But it is not only with regard to the time of vibration that the results of Baily's experiments manifest such a
remarkable agreement with theory notwithstanding the adoption of an erroneous assumption as to the relation of m
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to r ; the observed reduction of the arc of vibration was also found not greatly to differ from that given by
calculation.

As regards the spheres, the equation (172), p. 114, gives
El(k—3)=1+4§k=4)

Now even in the case of the 1 1/2-inch spheres the right-hand member of this equation exceeds unity by only
0.127, so that the supposition that, in order to rectify the law connecting mwith r, k' requires to be altered in the
same ratio as k - 1/2 does not much differ from the truth. Accordingly the calculated numbers for the spheres (p.
73) differ but little from the numbers given by observation. Calculation by aid of the table on p. 34 shows as
regards the rod No. 21 that if the cal culated number 237 represented the number given by observation, the assumed
value (0.116)? of m for atmospheric density would have to be increased in the ratio of | to 1.400, bringing it
considerably nearer to the true value as given by modern determinations. As observation gave for the logarithmic
decrement 315, ml would have to be still further increased, making it somewhat too high. Similar remarks apply to
the tube Nos. 35—38, which however according to Baily's figure differs much from a plain cylinder, and which
moreover requires a comparatively large correction for confined space. On the whole then the pretty close
agreement between theory and observation as to the decrement of arc, notwithstanding the assumption of a wrong
law in the reduction, may be considered to have been accounted for.

The very accurate experiments of Bessel are unfortunately not available for more than a very rude comparison,
for the reason mentioned in the foot-note at p. 60.

As regards the correction on account of the air to the time of vibration of a pendulum, we have seen that in the
case of a sphere, and very approximately in the case of along cylindrical rod which is not extremely narrow, it is of
theform

Gp + H(up),

where G and H depend on the form of the pendulum, but not upon the pressure, nor indeed on the nature, of the
surrounding gas, which might be other than air. There can be little doubt that the same would apply as a very near
approximation to any of the ordinary forms of pendulum, though in that case the constants G, H cannot in general
be obtained by calculation. The first term depends partly on buoyancy, partly on the inertia of the gas regarded as a
perfect fluid. As the latter part cannot be calculated, there is no need to calculate the former, since the two have to
be determined as a whole by observation. As the value of mfor air is now well known , the constants G and H may
be determined from the differences in the times of vibration at three suitably distributed pressures. These constants
are determined once for al for the same pendulum. They may even be applied without a fresh experimental
determination to any other pendulum of which the external form is geometrically similar, even though the internal
distribution of mass be different, of course with due regard to the dimensions of the terms with respect to the units
of length and time. Moreover unless we want to combine observations with different gases, or else to take account
of the variation of mwith temperature, we may write the above formula

Gp + H'y/p,

and as we must appeal to experiment for the determination of H', we do not even need to know the value of m]
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